/// <summary>
    /// Reads from the provided file name all parameters and data for a
    /// heightmap.  If the data for the heightmap does not exist, then
    /// no data is written to the provided texture.
    /// </summary>
    /// <param name='fileName'>
    /// The file name.  This can be relative or fully-qualified.
    /// </param>
    /// <param name='no'>
    /// The <see cref="NormalOptions" /> that will store read-in parameters.
    /// </param>
    /// <param name='co'>
    /// The <see cref="CloudOptions" /> that will store read-in parameters for
    /// <see cref="CloudFractal" />.
    /// </param>
    /// <param name='wo'>
    /// The <see cref="WorleyOptions" />  that will store read-in parameters for
    /// <see cref="WorleyNoise" />.
    /// </param>
    /// <param name='tex'>
    /// The <code>Texture2D</code> containing the heightmap data.
    /// </param>
    public static void Read(string fileName, ref NormalOptions no,
	                        ref CloudOptions co, ref VoronoiOptions vo,
							ref Texture2D tex)
    {
        using(BinaryReader r = new BinaryReader(File.OpenRead(fileName)))
        {
            no.size = r.ReadInt32();
            no.seed = r.ReadInt32();
            no.cloudInf = r.ReadSingle();
            no.voronoiInf = r.ReadSingle();
            no.useThermalErosion = r.ReadBoolean();
            no.useHydroErosion = r.ReadBoolean();
            no.showSeams = r.ReadBoolean();

            co.upperLeftStart = r.ReadSingle();
            co.lowerLeftStart = r.ReadSingle();
            co.lowerRightStart = r.ReadSingle();
            co.upperRightStart = r.ReadSingle();

            vo.metric = (DistanceFunctions.DistanceMetric)r.ReadInt32();
            vo.combiner = (CombinerFunctions.CombineFunction)r.ReadInt32();
            vo.numberOfFeaturePoints = r.ReadInt32();
            vo.numberOfSubregions = r.ReadInt32();
            vo.multiplier = r.ReadSingle();

            tex.Resize(no.size, no.size);
            int bLeft = (int)(r.BaseStream.Length - r.BaseStream.Position);
            if(bLeft > 0)
                tex.LoadImage(r.ReadBytes(bLeft));
        }
    }
Example #2
0
        public void FitTest5()
        {
            double[][] observations =
            {
                new double[] { 1, 2 },
                new double[] { 1, 2 },
                new double[] { 0, 1 },
                new double[] { 5, 7 }
            };

            double[] weights = { 1, 1, 0, 0 };

            var target = new MultivariateNormalDistribution(2);

            bool thrown = false;

            try { target.Fit(observations, weights); }
            catch (NonPositiveDefiniteMatrixException) { thrown = true; }

            Assert.IsTrue(thrown);

            NormalOptions options = new NormalOptions()
            {
                Robust = true
            };

            // No exception thrown
            target.Fit(observations, weights, options);

            checkDegenerate(target);
        }
        public void FitTest2()
        {
            double[][] observations =
            {
                new double[] { 1, 2 },
                new double[] { 1, 2 },
                new double[] { 1, 2 },
                new double[] { 1, 2 }
            };


            var target = new MultivariateNormalDistribution(2);

            bool thrown = false;

            try { target.Fit(observations); }
            catch (NonPositiveDefiniteMatrixException) { thrown = true; }

            Assert.IsTrue(thrown);

            NormalOptions options = new NormalOptions()
            {
                Regularization = double.Epsilon
            };

            // No exception thrown
            target.Fit(observations, options);
        }
        public void FitTest3()
        {
            double[][] observations =
            {
                new double[] { 1, 2 },
                new double[] { 2, 4 },
                new double[] { 3, 6 },
                new double[] { 4, 8 }
            };


            var target = new MultivariateNormalDistribution(2);

            NormalOptions options = new NormalOptions()
            {
                Robust = true
            };

            target.Fit(observations, options);

            double pdf = target.ProbabilityDensityFunction(4, 2);
            double cdf = target.DistributionFunction(4, 2);
            bool   psd = target.Covariance.IsPositiveDefinite();

            Assert.AreEqual(0.043239154739844896, pdf);
            Assert.AreEqual(0.12263905840338646, cdf);
            Assert.IsFalse(psd);
        }
Example #5
0
        /// <summary>
        ///   Fits the underlying distribution to a given set of observations.
        /// </summary>
        ///
        /// <param name="observations">The array of observations to fit the model against. The array
        ///   elements can be either of type double (for univariate data) or
        ///   type double[] (for multivariate data).</param>
        /// <param name="weights">The weight vector containing the weight for each of the samples.</param>
        /// <param name="options">Optional arguments which may be used during fitting, such
        ///   as regularization constants and additional parameters.</param>
        ///
        /// <remarks>
        ///   Although both double[] and double[][] arrays are supported,
        ///   providing a double[] for a multivariate distribution or a
        ///   double[][] for a univariate distribution may have a negative
        ///   impact in performance.
        /// </remarks>
        ///
        public override void Fit(double[] observations, double[] weights, IFittingOptions options)
        {
            if (immutable)
            {
                throw new InvalidOperationException();
            }

            double mu, var;

            if (weights != null)
            {
#if DEBUG
                for (int i = 0; i < weights.Length; i++)
                {
                    if (Double.IsNaN(weights[i]) || Double.IsInfinity(weights[i]))
                    {
                        throw new Exception("Invalid numbers in the weight vector.");
                    }
                }
#endif

                // Compute weighted mean
                mu = Statistics.Tools.WeightedMean(observations, weights);

                // Compute weighted variance
                var = Statistics.Tools.WeightedVariance(observations, weights, mu);
            }
            else
            {
                // Compute weighted mean
                mu = Statistics.Tools.Mean(observations);

                // Compute weighted variance
                var = Statistics.Tools.Variance(observations, mu);
            }

            if (options != null)
            {
                // Parse optional estimation options
                NormalOptions o = (NormalOptions)options;
                double        regularization = o.Regularization;

                if (var == 0 || Double.IsNaN(var) || Double.IsInfinity(var))
                {
                    var = regularization;
                }
            }

            if (var <= 0)
            {
                throw new ArgumentException("Variance is zero. Try specifying "
                                            + "a regularization constant in the fitting options.");
            }

            initialize(mu, Math.Sqrt(var), var);
        }
Example #6
0
        public void GetFittingOptionsTest()
        {
            NormalOptions options = (NormalOptions)DistributionInfo.GetFittingOptions <NormalDistribution>();

            Assert.AreEqual(0, options.Regularization);
            Assert.IsNull(options.Postprocessing);
            Assert.AreEqual(false, options.Diagonal);
            Assert.AreEqual(false, options.Robust);
            Assert.AreEqual(false, options.Shared);
        }
Example #7
0
        /// <summary>
        ///   Fits the underlying distribution to a given set of observations.
        /// </summary>
        ///
        /// <param name="observations">The array of observations to fit the model against. The array
        /// elements can be either of type double (for univariate data) or
        /// type double[] (for multivariate data).</param>
        /// <param name="weights">The weight vector containing the weight for each of the samples.</param>
        /// <param name="options">Optional arguments which may be used during fitting, such
        /// as regularization constants and additional parameters.</param>
        ///
        /// <remarks>
        ///   Although both double[] and double[][] arrays are supported,
        ///   providing a double[] for a multivariate distribution or a
        ///   double[][] for a univariate distribution may have a negative
        ///   impact in performance.
        /// </remarks>
        ///
        public override void Fit(double[][] observations, double[] weights, IFittingOptions options)
        {
            double[] means;
            double[,] cov;

            if (weights != null)
            {
                // Compute weighted mean vector
                means = Statistics.Tools.Mean(observations, weights);

                // Compute weighted covariance matrix
                cov = Statistics.Tools.WeightedCovariance(observations, weights, means);
            }
            else
            {
                // Compute mean vector
                means = Statistics.Tools.Mean(observations);

                // Compute covariance matrix
                cov = Statistics.Tools.Covariance(observations, means);
            }

            CholeskyDecomposition chol = new CholeskyDecomposition(cov, false, true);

            if (options != null)
            {
                // Parse optional estimation options
                NormalOptions o = (NormalOptions)options;
                double        regularization = o.Regularization;

                if (regularization > 0)
                {
                    int dimension = observations[0].Length;

                    while (!chol.PositiveDefinite)
                    {
                        for (int i = 0; i < dimension; i++)
                        {
                            cov[i, i] += regularization;
                        }

                        chol = new CholeskyDecomposition(cov, false, true);
                    }
                }
            }

            if (!chol.PositiveDefinite)
            {
                throw new NonPositiveDefiniteMatrixException("Covariance matrix is not positive "
                                                             + "definite. Try specifying a regularization constant in the fitting options.");
            }

            // Become the newly fitted distribution.
            initialize(means, cov, chol);
        }
Example #8
0
        /// <summary>
        /// Fits the underlying distribution to a given set of observations.
        /// </summary>
        /// <param name="observations">The array of observations to fit the model against. The array
        /// elements can be either of type double (for univariate data) or
        /// type double[] (for multivariate data).</param>
        /// <param name="weights">The weight vector containing the weight for each of the samples.</param>
        /// <param name="options">Optional arguments which may be used during fitting, such
        /// as regularization constants and additional parameters.</param>
        /// <remarks>
        /// Although both double[] and double[][] arrays are supported,
        /// providing a double[] for a multivariate distribution or a
        /// double[][] for a univariate distribution may have a negative
        /// impact in performance.
        /// </remarks>
        public override void Fit(double[][] observations, double[] weights, IFittingOptions options)
        {
            double[] means;
            double[,] cov;

            if (weights != null)
            {
#if DEBUG
                for (int i = 0; i < weights.Length; i++)
                {
                    if (Double.IsNaN(weights[i]) || Double.IsInfinity(weights[i]))
                    {
                        throw new Exception("Invalid numbers in the weight vector.");
                    }
                }
#endif
                // Compute weighted mean vector
                means = GABIZ.Base.Statistics.Tools.Mean(observations, weights);

                // Compute weighted covariance matrix
                cov = GABIZ.Base.Statistics.Tools.WeightedCovariance(observations, weights, means);
            }
            else
            {
                // Compute mean vector
                means = GABIZ.Base.Statistics.Tools.Mean(observations);

                // Compute covariance matrix
                cov = GABIZ.Base.Statistics.Tools.Covariance(observations, means);
            }

            if (options != null)
            {
                // Parse optional estimation options
                NormalOptions o = (NormalOptions)options;
                double        regularization = o.Regularization;

                while (!cov.IsPositiveDefinite())
                {
                    int dimension = observations[0].Length;
                    for (int i = 0; i < dimension; i++)
                    {
                        cov[i, i] += regularization;
                    }
                }
            }

            // Become the newly fitted distribution.
            initialize(means, cov);
        }
        public void EstimateTest()
        {
            double[] observations = { 2, 2, 2, 2, 2 };

            NormalOptions options = new NormalOptions()
            {
                Regularization = 0.1
            };

            LognormalDistribution actual = LognormalDistribution.Estimate(observations, options);

            Assert.AreEqual(System.Math.Log(2), actual.Location);
            Assert.AreEqual(System.Math.Sqrt(0.1), actual.Shape);
        }
Example #10
0
        /// <summary>
        ///   Creates a Baum-Welch with default configurations for
        ///   hidden Markov models with normal mixture densities.
        /// </summary>
        ///
        public static BaumWelchLearning <Mixture <NormalDistribution> > FromMixtureModel(
            HiddenMarkovModel <Mixture <NormalDistribution> > model, NormalOptions options)
        {
            MixtureOptions mixOptions = new MixtureOptions()
            {
                Iterations   = 1,
                InnerOptions = options
            };

            return(new BaumWelchLearning <Mixture <NormalDistribution> >(model)
            {
                FittingOptions = mixOptions
            });
        }
        public void FitTest()
        {
            IDistribution target = CreateMultivariateContinuousDistribution();

            double[][] observations =
            {
                new double[] { 1, 1 },
                new double[] { 1, 1 },
            };

            double[] weights = { 0.50, 0.50 };

            bool thrown;

            IFittingOptions options = new NormalOptions()
            {
                Regularization = 0.1
            };

            thrown = false;
            try
            {
                target.Fit(observations, weights);
            }
            catch
            {
                thrown = true;
            }

            Assert.AreEqual(true, thrown);


            thrown = false;
            try
            {
                target.Fit(observations, weights, options);
            }
            catch
            {
                thrown = true;
            }

            Assert.AreEqual(false, thrown);
        }
        public void FitTest1()
        {
            IDistribution target = CreateMultivariateContinuousDistribution(); // TODO: Initialize to an appropriate value

            Array observations = new double[][]
            {
                new double[] { 1, 1 },
                new double[] { 1, 1 },
            };

            bool thrown;

            IFittingOptions options = new NormalOptions()
            {
                Regularization = 0.1
            };

            thrown = false;
            try
            {
                target.Fit(observations);
            }
            catch
            {
                thrown = true;
            }

            Assert.AreEqual(true, thrown);


            thrown = false;
            try
            {
                target.Fit(observations, options);
            }
            catch
            {
                thrown = true;
            }

            Assert.AreEqual(false, thrown);
        }
Example #13
0
        /// <summary>
        /// 载入设置
        /// </summary>
        /// <param name="options">相关设置</param>
        public static void Load(NormalOptions options)
        {
            if (File.Exists(options.Conf) == false)
            {
                Log.Warn(string.Format("没有找到配置文件\"{0}\"!", options.Conf));
                Environment.Exit(1);
                return;
            }

            string content;

            using (StreamReader reader = new StreamReader(options.Conf, Encoding.UTF8))
            {
                content = reader.ReadToEnd();
            }

            Log.Info("成功获取配置文件,正在加载……");
            List <SingleConfiguration> configurations = JsonConvert.DeserializeObject <List <SingleConfiguration> >(content, new ConfigurationConverter());

            Log.Info(string.Format("成功加载配置文件,共有{0}条配置。", configurations.Count));
            if (configurations.Count == 0)
            {
                Environment.Exit(0);
            }

            WorkScheduler scheduler = new WorkScheduler();

            foreach (var i in configurations)
            {
                scheduler.StartWork(i);
                Log.Info(string.Format("成功启动任务\"{0}\"。", i.name));
            }

            Log.Info("成功启动所有备份任务。");
#if !DEBUG
            Thread.Sleep(Timeout.Infinite);//加载完成后主线程休眠。
#endif
        }
Example #14
0
        /// <summary>
        /// Fits the underlying distribution to a given set of observations.
        /// </summary>
        /// <param name="observations">The array of observations to fit the model against. The array
        /// elements can be either of type double (for univariate data) or
        /// type double[] (for multivariate data).</param>
        /// <param name="weights">The weight vector containing the weight for each of the samples.</param>
        /// <param name="options">Optional arguments which may be used during fitting, such
        /// as regularization constants and additional parameters.</param>
        /// <remarks>
        /// Although both double[] and double[][] arrays are supported,
        /// providing a double[] for a multivariate distribution or a
        /// double[][] for a univariate distribution may have a negative
        /// impact in performance.
        /// </remarks>
        public override void Fit(double[] observations, double[] weights, IFittingOptions options)
        {
            if (immutable)
            {
                throw new InvalidOperationException();
            }

#if DEBUG
            for (int i = 0; i < weights.Length; i++)
            {
                if (Double.IsNaN(weights[i]) || Double.IsInfinity(weights[i]))
                {
                    throw new Exception("Invalid numbers in the weight vector.");
                }
            }
#endif

            // Compute weighted mean
            double m = GABIZ.Base.Statistics.Tools.WeightedMean(observations, weights);

            // Compute weighted variance
            double v = GABIZ.Base.Statistics.Tools.WeightedVariance(observations, weights, m);

            if (options != null)
            {
                // Parse optional estimation options
                NormalOptions o = (NormalOptions)options;
                double        regularization = o.Regularization;

                if (v == 0 || Double.IsNaN(v) || Double.IsInfinity(v))
                {
                    v = regularization;
                }
            }

            initialize(m, v);
        }
Example #15
0
 public TerrainGenerator(NormalOptions normalOpt, CloudOptions cloudOpt, VoronoiOptions voronoiOpt)
 {
     Init(normalOpt, cloudOpt, voronoiOpt);
 }
Example #16
0
        /// <summary>
        ///   Estimates a new Normal distribution from a given set of observations.
        /// </summary>
        ///
        public static LognormalDistribution Estimate(double[] observations, double[] weights, NormalOptions options = null)
        {
            LognormalDistribution n = new LognormalDistribution();

            n.Fit(observations, weights, options);
            return(n);
        }
Example #17
0
    private void Init(NormalOptions normalOpt, CloudOptions cloudOpt, VoronoiOptions voronoiOpt)
    {
        _normalOpt = normalOpt;
        _cloudOpt = cloudOpt;
        _voronoiOpt = voronoiOpt;

        _cfGen = new CloudFractal(_normalOpt.size, _normalOpt.seed, _cloudOpt);
        _vnGen = new VoronoiDiagram(_normalOpt.size, _normalOpt.seed, _voronoiOpt);
        _heightMap = new float[_normalOpt.size * _normalOpt.size];
    }
Example #18
0
    /// <summary>
    /// Overload for <see cref="Write" /> that does not have texture data.
    /// </summary>
    /// <param name='fileName'>
    /// The file name.  This can be relative or fully-qualified.
    /// </param>
    /// <param name='no'>
    /// The <see cref="NormalOptions" /> to write.
    /// </param>
    /// <param name='co'>
    /// The <see cref="CloudOptions" /> to write.
    /// </param>
    /// <param name='wo'>
    /// The <see cref="WorleyOptions" /> to write.
    /// </param>
    /// <param name='tex'>
    /// The <code>Texture2D</code> containing the heightmap data.
    /// </param>
    public static void Write(string fileName, NormalOptions no, CloudOptions co,
	                         VoronoiOptions vo)
    {
        Write(fileName, no, co, vo, null);
    }
Example #19
0
    /// <summary>
    /// Write the specified the heightmap and all paramaters to the provided
    /// file name.
    /// </summary>
    /// <param name='fileName'>
    /// The file name.  This can be relative or fully-qualified.
    /// </param>
    /// <param name='no'>
    /// The <see cref="NormalOptions" /> to write.
    /// </param>
    /// <param name='co'>
    /// The <see cref="CloudOptions" /> to write.
    /// </param>
    /// <param name='wo'>
    /// The <see cref="WorleyOptions" /> to write.
    /// </param>
    /// <param name='tex'>
    /// The <code>Texture2D</code> containing the heightmap data.
    /// </param>
    /// <description>
    /// This uses a <code>BinaryWriter</code> to convert all data into binary
    /// data for writing.
    /// </description>
    public static void Write(string fileName, NormalOptions no, CloudOptions co,
								VoronoiOptions vo, Texture2D tex)
    {
        //if file already exists, will overwrite without warning
        using(BinaryWriter w = new BinaryWriter(File.Open(fileName+".emb",
                                                FileMode.Create)))
        {
            w.Write(no.size);
            w.Write(no.seed);
            w.Write(no.cloudInf);
            w.Write(no.voronoiInf);
            w.Write(no.useThermalErosion);
            w.Write(no.useHydroErosion);
            w.Write(no.showSeams);

            w.Write(co.upperLeftStart);
            w.Write(co.lowerLeftStart);
            w.Write(co.lowerRightStart);
            w.Write(co.upperRightStart);

            w.Write((int)vo.metric);
            w.Write((int)vo.combiner);
            w.Write(vo.numberOfFeaturePoints);
            w.Write(vo.numberOfSubregions);
            w.Write(vo.multiplier);

            if(tex != null)
                w.Write(tex.EncodeToPNG());
        }
    }
Example #20
0
 /// <summary>
 ///   Estimates a new Normal distribution from a given set of observations.
 /// </summary>
 ///
 public static NormalDistribution Estimate(double[][] observations, NormalOptions options)
 {
     return(Estimate(observations, null, options));
 }
Example #21
0
        /// <summary>
        ///   Estimates a new Normal distribution from a given set of observations.
        /// </summary>
        ///
        public static NormalDistribution Estimate(double[][] observations, double[] weights, NormalOptions options)
        {
            NormalDistribution n = new NormalDistribution(observations[0].Length);

            n.Fit(observations, weights, options);
            return(n);
        }
Example #22
0
        /// <summary>
        ///   Fits the underlying distribution to a given set of observations.
        /// </summary>
        ///
        /// <param name="observations">The array of observations to fit the model against. The array
        /// elements can be either of type double (for univariate data) or
        /// type double[] (for multivariate data).</param>
        /// <param name="weights">The weight vector containing the weight for each of the samples.</param>
        /// <param name="options">Optional arguments which may be used during fitting, such
        /// as regularization constants and additional parameters.</param>
        ///
        /// <remarks>
        ///   Although both double[] and double[][] arrays are supported,
        ///   providing a double[] for a multivariate distribution or a
        ///   double[][] for a univariate distribution may have a negative
        ///   impact in performance.
        /// </remarks>
        ///
        public override void Fit(double[][] observations, double[] weights, IFittingOptions options)
        {
            double[] means;
            double[,] cov;

            NormalOptions opt = options as NormalOptions;


            if (weights != null)
            {
#if DEBUG
                double sum = 0;
                for (int i = 0; i < weights.Length; i++)
                {
                    if (Double.IsNaN(weights[i]) || Double.IsInfinity(weights[i]))
                    {
                        throw new Exception("Invalid numbers in the weight vector.");
                    }
                    sum += weights[i];
                }

                if (Math.Abs(sum - 1.0) > 1e-10)
                {
                    throw new Exception("Weights do not sum to one.");
                }
#endif
                // Compute weighted mean vector
                means = Statistics.Tools.Mean(observations, weights);

                // Compute weighted covariance matrix
                if (opt != null && opt.Diagonal)
                {
                    cov = Matrix.Diagonal(Statistics.Tools.WeightedVariance(observations, weights, means));
                }
                else
                {
                    cov = Statistics.Tools.WeightedCovariance(observations, weights, means);
                }
            }
            else
            {
                // Compute mean vector
                means = Statistics.Tools.Mean(observations);

                // Compute covariance matrix
                if (opt != null && opt.Diagonal)
                {
                    cov = Matrix.Diagonal(Statistics.Tools.Variance(observations, means));
                }
                cov = Statistics.Tools.Covariance(observations, means);
            }

            CholeskyDecomposition chol = new CholeskyDecomposition(cov, false, true);

            if (opt != null)
            {
                // Parse optional estimation options
                double regularization = opt.Regularization;

                if (regularization > 0)
                {
                    int dimension = observations[0].Length;

                    while (!chol.PositiveDefinite)
                    {
                        for (int i = 0; i < dimension; i++)
                        {
                            for (int j = 0; j < dimension; j++)
                            {
                                if (Double.IsNaN(cov[i, j]) || Double.IsInfinity(cov[i, j]))
                                {
                                    cov[i, j] = 0.0;
                                }
                            }

                            cov[i, i] += regularization;
                        }

                        chol = new CholeskyDecomposition(cov, false, true);
                    }
                }
            }

            if (!chol.PositiveDefinite)
            {
                throw new NonPositiveDefiniteMatrixException("Covariance matrix is not positive "
                                                             + "definite. Try specifying a regularization constant in the fitting options.");
            }

            // Become the newly fitted distribution.
            initialize(means, cov, chol);
        }