/// <summary> /// Solve the circuit for transient simulation. /// </summary> /// <param name="Analysis">Analysis from the circuit to solve.</param> /// <param name="TimeStep">Discretization timestep.</param> /// <param name="Log">Where to send output.</param> /// <returns>TransientSolution describing the solution of the circuit.</returns> public static TransientSolution Solve(Analysis Analysis, Expression TimeStep, IEnumerable <Arrow> InitialConditions, ILog Log) { Expression h = TimeStep; Log.WriteLine(MessageType.Info, "Building solution for h={0}", TimeStep.ToString()); // Analyze the circuit to get the MNA system and unknowns. List <Equal> mna = Analysis.Equations.ToList(); List <Expression> y = Analysis.Unknowns.ToList(); LogExpressions(Log, MessageType.Verbose, "System of " + mna.Count + " equations and " + y.Count + " unknowns = {{ " + String.Join(", ", y) + " }}", mna); // Evaluate for simulation functions. // Define T = step size. Analysis.Add("T", h); // Define d[t] = delta function. Analysis.Add(ExprFunction.New("d", Call.If((0 <= t) & (t < h), 1, 0), t)); // Define u[t] = step function. Analysis.Add(ExprFunction.New("u", Call.If(t >= 0, 1, 0), t)); mna = mna.Resolve(Analysis).OfType <Equal>().ToList(); // Find out what variables have differential relationships. List <Expression> dy_dt = y.Where(i => mna.Any(j => j.DependsOn(D(i, t)))).Select(i => D(i, t)).ToList(); // Find steady state solution for initial conditions. List <Arrow> initial = InitialConditions.ToList(); Log.WriteLine(MessageType.Info, "Performing steady state analysis..."); SystemOfEquations dc = new SystemOfEquations(mna // Derivatives, t, and T are zero in the steady state. .Evaluate(dy_dt.Select(i => Arrow.New(i, 0)).Append(Arrow.New(t, 0), Arrow.New(T, 0))) // Use the initial conditions from analysis. .Evaluate(Analysis.InitialConditions) // Evaluate variables at t=0. .OfType <Equal>(), y.Select(j => j.Evaluate(t, 0))); // Solve partitions independently. foreach (SystemOfEquations i in dc.Partition()) { try { List <Arrow> part = i.Equations.Select(j => Equal.New(j, 0)).NSolve(i.Unknowns.Select(j => Arrow.New(j, 0))); initial.AddRange(part); LogExpressions(Log, MessageType.Verbose, "Initial conditions:", part); } catch (Exception) { Log.WriteLine(MessageType.Warning, "Failed to find partition initial conditions, simulation may be unstable."); } } // Transient analysis of the system. Log.WriteLine(MessageType.Info, "Performing transient analysis..."); SystemOfEquations system = new SystemOfEquations(mna, dy_dt.Concat(y)); // Solve the diff eq for dy/dt and integrate the results. system.RowReduce(dy_dt); system.BackSubstitute(dy_dt); IEnumerable <Equal> integrated = system.Solve(dy_dt) .NDIntegrate(t, h, IntegrationMethod.Trapezoid) // NDIntegrate finds y[t + h] in terms of y[t], we need y[t] in terms of y[t - h]. .Evaluate(t, t - h).Cast <Arrow>() .Select(i => Equal.New(i.Left, i.Right)).Buffer(); system.AddRange(integrated); LogExpressions(Log, MessageType.Verbose, "Integrated solutions:", integrated); LogExpressions(Log, MessageType.Verbose, "Discretized system:", system.Select(i => Equal.New(i, 0))); // Solving the system... List <SolutionSet> solutions = new List <SolutionSet>(); // Partition the system into independent systems of equations. foreach (SystemOfEquations F in system.Partition()) { // Find linear solutions for y. Linear systems should be completely solved here. F.RowReduce(); IEnumerable <Arrow> linear = F.Solve(); if (linear.Any()) { linear = Factor(linear); solutions.Add(new LinearSolutions(linear)); LogExpressions(Log, MessageType.Verbose, "Linear solutions:", linear); } // If there are any variables left, there are some non-linear equations requiring numerical techniques to solve. if (F.Unknowns.Any()) { // The variables of this system are the newton iteration updates. List <Expression> dy = F.Unknowns.Select(i => NewtonIteration.Delta(i)).ToList(); // Compute JxF*dy + F(y0) == 0. SystemOfEquations nonlinear = new SystemOfEquations( F.Select(i => i.Gradient(F.Unknowns).Select(j => new KeyValuePair <Expression, Expression>(NewtonIteration.Delta(j.Key), j.Value)) .Append(new KeyValuePair <Expression, Expression>(1, i))), dy); // ly is the subset of y that can be found linearly. List <Expression> ly = dy.Where(j => !nonlinear.Any(i => i[j].DependsOn(NewtonIteration.DeltaOf(j)))).ToList(); // Find linear solutions for dy. nonlinear.RowReduce(ly); IEnumerable <Arrow> solved = nonlinear.Solve(ly); solved = Factor(solved); // Initial guess for y[t] = y[t - h]. IEnumerable <Arrow> guess = F.Unknowns.Select(i => Arrow.New(i, i.Evaluate(t, t - h))).ToList(); guess = Factor(guess); // Newton system equations. IEnumerable <LinearCombination> equations = nonlinear.Equations; equations = Factor(equations); solutions.Add(new NewtonIteration(solved, equations, nonlinear.Unknowns, guess)); LogExpressions(Log, MessageType.Verbose, String.Format("Non-linear Newton's method updates ({0}):", String.Join(", ", nonlinear.Unknowns)), equations.Select(i => Equal.New(i, 0))); LogExpressions(Log, MessageType.Verbose, "Linear Newton's method updates:", solved); } } Log.WriteLine(MessageType.Info, "System solved, {0} solution sets for {1} unknowns.", solutions.Count, solutions.Sum(i => i.Unknowns.Count())); return(new TransientSolution( h, solutions, initial)); }
// The resulting lambda processes N samples, using buffers provided for Input and Output: // void Process(int N, double t0, double T, double[] Input0 ..., double[] Output0 ...) // { ... } private Delegate DefineProcess() { // Map expressions to identifiers in the syntax tree. List <KeyValuePair <Expression, LinqExpr> > inputs = new List <KeyValuePair <Expression, LinqExpr> >(); List <KeyValuePair <Expression, LinqExpr> > outputs = new List <KeyValuePair <Expression, LinqExpr> >(); // Lambda code generator. CodeGen code = new CodeGen(); // Create parameters for the basic simulation info (N, t, Iterations). ParamExpr SampleCount = code.Decl <int>(Scope.Parameter, "SampleCount"); ParamExpr t = code.Decl(Scope.Parameter, Simulation.t); // Create buffer parameters for each input... foreach (Expression i in Input) { inputs.Add(new KeyValuePair <Expression, LinqExpr>(i, code.Decl <double[]>(Scope.Parameter, i.ToString()))); } // ... and output. foreach (Expression i in Output) { outputs.Add(new KeyValuePair <Expression, LinqExpr>(i, code.Decl <double[]>(Scope.Parameter, i.ToString()))); } // Create globals to store previous values of inputs. foreach (Expression i in Input.Distinct()) { AddGlobal(i.Evaluate(t_t0)); } // Define lambda body. // int Zero = 0 LinqExpr Zero = LinqExpr.Constant(0); // double h = T / Oversample LinqExpr h = LinqExpr.Constant(TimeStep / (double)Oversample); // Load the globals to local variables and add them to the map. foreach (KeyValuePair <Expression, GlobalExpr <double> > i in globals) { code.Add(LinqExpr.Assign(code.Decl(i.Key), i.Value)); } foreach (KeyValuePair <Expression, LinqExpr> i in inputs) { code.Add(LinqExpr.Assign(code.Decl(i.Key), code[i.Key.Evaluate(t_t0)])); } // Create arrays for linear systems. int M = Solution.Solutions.OfType <NewtonIteration>().Max(i => i.Equations.Count(), 0); int N = Solution.Solutions.OfType <NewtonIteration>().Max(i => i.UnknownDeltas.Count(), 0) + 1; LinqExpr JxF = code.DeclInit <double[][]>("JxF", LinqExpr.NewArrayBounds(typeof(double[]), LinqExpr.Constant(M))); for (int j = 0; j < M; ++j) { code.Add(LinqExpr.Assign(LinqExpr.ArrayAccess(JxF, LinqExpr.Constant(j)), LinqExpr.NewArrayBounds(typeof(double), LinqExpr.Constant(N)))); } // for (int n = 0; n < SampleCount; ++n) ParamExpr n = code.Decl <int>("n"); code.For( () => code.Add(LinqExpr.Assign(n, Zero)), LinqExpr.LessThan(n, SampleCount), () => code.Add(LinqExpr.PreIncrementAssign(n)), () => { // Prepare input samples for oversampling interpolation. Dictionary <Expression, LinqExpr> dVi = new Dictionary <Expression, LinqExpr>(); foreach (Expression i in Input.Distinct()) { LinqExpr Va = code[i]; // Sum all inputs with this key. IEnumerable <LinqExpr> Vbs = inputs.Where(j => j.Key.Equals(i)).Select(j => j.Value); LinqExpr Vb = LinqExpr.ArrayAccess(Vbs.First(), n); foreach (LinqExpr j in Vbs.Skip(1)) { Vb = LinqExpr.Add(Vb, LinqExpr.ArrayAccess(j, n)); } // dVi = (Vb - Va) / Oversample code.Add(LinqExpr.Assign( Decl <double>(code, dVi, i, "d" + i.ToString().Replace("[t]", "")), LinqExpr.Multiply(LinqExpr.Subtract(Vb, Va), LinqExpr.Constant(1.0 / (double)Oversample)))); } // Prepare output sample accumulators for low pass filtering. Dictionary <Expression, LinqExpr> Vo = new Dictionary <Expression, LinqExpr>(); foreach (Expression i in Output.Distinct()) { code.Add(LinqExpr.Assign( Decl <double>(code, Vo, i, i.ToString().Replace("[t]", "")), LinqExpr.Constant(0.0))); } // int ov = Oversample; // do { -- ov; } while(ov > 0) ParamExpr ov = code.Decl <int>("ov"); code.Add(LinqExpr.Assign(ov, LinqExpr.Constant(Oversample))); code.DoWhile(() => { // t += h code.Add(LinqExpr.AddAssign(t, h)); // Interpolate the input samples. foreach (Expression i in Input.Distinct()) { code.Add(LinqExpr.AddAssign(code[i], dVi[i])); } // Compile all of the SolutionSets in the solution. foreach (SolutionSet ss in Solution.Solutions) { if (ss is LinearSolutions) { // Linear solutions are easy. LinearSolutions S = (LinearSolutions)ss; foreach (Arrow i in S.Solutions) { code.DeclInit(i.Left, i.Right); } } else if (ss is NewtonIteration) { NewtonIteration S = (NewtonIteration)ss; // Start with the initial guesses from the solution. foreach (Arrow i in S.Guesses) { code.DeclInit(i.Left, i.Right); } // int it = iterations LinqExpr it = code.ReDeclInit <int>("it", Iterations); // do { ... --it } while(it > 0) code.DoWhile((Break) => { // Solve the un-solved system. Solve(code, JxF, S.Equations, S.UnknownDeltas); // Compile the pre-solved solutions. if (S.KnownDeltas != null) { foreach (Arrow i in S.KnownDeltas) { code.DeclInit(i.Left, i.Right); } } // bool done = true LinqExpr done = code.ReDeclInit("done", true); foreach (Expression i in S.Unknowns) { LinqExpr v = code[i]; LinqExpr dv = code[NewtonIteration.Delta(i)]; // done &= (|dv| < |v|*epsilon) code.Add(LinqExpr.AndAssign(done, LinqExpr.LessThan(LinqExpr.Multiply(Abs(dv), LinqExpr.Constant(1e4)), LinqExpr.Add(Abs(v), LinqExpr.Constant(1e-6))))); // v += dv code.Add(LinqExpr.AddAssign(v, dv)); } // if (done) break code.Add(LinqExpr.IfThen(done, Break)); // --it; code.Add(LinqExpr.PreDecrementAssign(it)); }, LinqExpr.GreaterThan(it, Zero)); //// bool failed = false //LinqExpr failed = Decl(code, code, "failed", LinqExpr.Constant(false)); //for (int i = 0; i < eqs.Length; ++i) // // failed |= |JxFi| > epsilon // code.Add(LinqExpr.OrAssign(failed, LinqExpr.GreaterThan(Abs(eqs[i].ToExpression().Compile(map)), LinqExpr.Constant(1e-3)))); //code.Add(LinqExpr.IfThen(failed, ThrowSimulationDiverged(n))); } } // Update the previous timestep variables. foreach (SolutionSet S in Solution.Solutions) { foreach (Expression i in S.Unknowns.Where(i => globals.Keys.Contains(i.Evaluate(t_t0)))) { code.Add(LinqExpr.Assign(code[i.Evaluate(t_t0)], code[i])); } } // Vo += i foreach (Expression i in Output.Distinct()) { LinqExpr Voi = LinqExpr.Constant(0.0); try { Voi = code.Compile(i); } catch (Exception Ex) { Log.WriteLine(MessageType.Warning, Ex.Message); } code.Add(LinqExpr.AddAssign(Vo[i], Voi)); } // Vi_t0 = Vi foreach (Expression i in Input.Distinct()) { code.Add(LinqExpr.Assign(code[i.Evaluate(t_t0)], code[i])); } // --ov; code.Add(LinqExpr.PreDecrementAssign(ov)); }, LinqExpr.GreaterThan(ov, Zero)); // Output[i][n] = Vo / Oversample foreach (KeyValuePair <Expression, LinqExpr> i in outputs) { code.Add(LinqExpr.Assign(LinqExpr.ArrayAccess(i.Value, n), LinqExpr.Multiply(Vo[i.Key], LinqExpr.Constant(1.0 / (double)Oversample)))); } // Every 256 samples, check for divergence. if (Vo.Any()) { code.Add(LinqExpr.IfThen(LinqExpr.Equal(LinqExpr.And(n, LinqExpr.Constant(0xFF)), Zero), LinqExpr.Block(Vo.Select(i => LinqExpr.IfThenElse(IsNotReal(i.Value), ThrowSimulationDiverged(n), LinqExpr.Assign(i.Value, RoundDenormToZero(i.Value))))))); } }); // Copy the global state variables back to the globals. foreach (KeyValuePair <Expression, GlobalExpr <double> > i in globals) { code.Add(LinqExpr.Assign(i.Value, code[i.Key])); } LinqExprs.LambdaExpression lambda = code.Build(); Delegate ret = lambda.Compile(); return(ret); }