Example #1
0
    public void FromIntList(IEnumerator <int> list)
    {
        subnetNeurons = list.Current;
        list.MoveNext();
        layers = list.Current;
        list.MoveNext();
        baseConnNum = list.Current;
        list.MoveNext();
        inputOutputConnNum = list.Current;
        list.MoveNext();
        EmotionState = list.Current;
        list.MoveNext();

        Init();

        subNets = new NeuronCluster[list.Current];
        list.MoveNext();
        for (int i = 0; i < subNets.Length; i++)
        {
            subNets[i] = NeuronCluster.FromIntList(list);
        }
        connections = new NNConnection[list.Current];
        list.MoveNext();
        for (int i = 0; i < connections.Length; i++)
        {
            connections[i] = NNConnection.FromIntList(list);
        }
    }
Example #2
0
    public void DoTimestep()
    {
        if (EmotionState > 0)
        {
            EmotionState--;
        }
        else if (EmotionState < 0)
        {
            EmotionState++;
        }

        int finalEmotionState = (EmotionState > EMOTION_MAGNITUDE_THRESH ? 1 : (EmotionState < -EMOTION_MAGNITUDE_THRESH ? -1 : 0));

        // First, copy inputs / connection values into all subnets
        for (int i = 0; i < connections.Length; i++)
        {
            NNConnection  conn   = connections[i];
            NeuronCluster srcNet = subNets[conn.srcNet];
            // destNet can be -1, which means access the IO ports
            if (conn.destNet >= 0)
            {
                NeuronCluster destNet = subNets[conn.destNet];
                srcNet.SetExternalInput(conn.srcIdx, destNet.GetExternalOutput(conn.destIdx));
                destNet.SetExternalInput(conn.destIdx, srcNet.GetExternalOutput(conn.srcIdx));
            }
            else
            {
                srcNet.SetExternalInput(conn.srcIdx, inputVector[conn.destIdx]);
                // copy outputs after processing
                // outputVector[conn.destIdx] = srcNet.GetExternalOutput(conn.srcIdx);
            }
        }
        // Second, subnets process based on emotional state
        for (int i = 0; i < subNets.Length; i++)
        {
            subNets[i].FullTimestep(finalEmotionState);
        }
        // Third, set outputs
        for (int i = 0; i < connections.Length; i++)
        {
            NNConnection conn = connections[i];
            // destNet must be -1
            if (conn.destNet != -1)
            {
                continue;
            }
            NeuronCluster srcNet = subNets[conn.srcNet];
            outputVector[conn.destIdx] = srcNet.GetExternalOutput(conn.srcIdx);
        }
    }
Example #3
0
    public static NeuronCluster FromIntList(IEnumerator <int> list)
    {
        int numNeurons = list.Current;

        list.MoveNext();
        int numExposed = list.Current;

        list.MoveNext();
        NeuronCluster result = new NeuronCluster(numNeurons, numExposed);

        for (int i = 0; i < numExposed; i++)
        {
            result.externalInputs[i] = list.Current;
            list.MoveNext();
        }
        for (int i = 0; i < numExposed; i++)
        {
            result.externalOutputs[i] = list.Current;
            list.MoveNext();
        }
        for (int i = 0; i < numNeurons; i++)
        {
            result.activations[i] = list.Current;
            list.MoveNext();
        }
        for (int i = 0; i < numNeurons; i++)
        {
            result.cooldowns[i] = list.Current;
            list.MoveNext();
        }
        for (int i = 0; i < numNeurons; i++)
        {
            for (int j = 0; j < numNeurons; j++)
            {
                result.connections[i][j] = list.Current;
                list.MoveNext();
            }
        }
        return(result);
    }
Example #4
0
    private void Init()
    {
        inputVector  = new int[InputOutputConnTotal];
        outputVector = new int[InputOutputConnTotal];
        subNets      = new NeuronCluster[(int)Mathf.Pow(2, layers) - 1];
        List <NNConnection> listConnections = new List <NNConnection>();

        for (int layer = 0; layer < layers; layer++)
        {
            int startIdx = (int)Mathf.Pow(2, layer) - 1;
            int endIdx   = (int)Mathf.Pow(2, layer + 1) - 1;
            for (int i = startIdx; i < endIdx; i++)
            {
                int exposed = 3 * baseConnNum;
                if (layer == layers - 1)
                {
                    exposed = inputOutputConnNum + baseConnNum;
                }
                else if (layer == 0)
                {
                    exposed = 2 * baseConnNum;
                }
                subNets[i] = new NeuronCluster(subnetNeurons, exposed);
                // set up connections. Connect first 2 * base to the lower layer and last 1 * base to the higher layer
                // top layer only has the 2 * base to the lower layer
                // the index of the net in the next layer is the index of this one times two, and times two plus one
                int idxInLayer = i - startIdx;
                if (layer < layers - 1)
                {
                    int destNetIdx    = endIdx + 2 * idxInLayer;
                    int destConnStart = 2 * baseConnNum;
                    if (layer == layers - 2)
                    {
                        // the dest conns on the last layer hook up differently
                        destConnStart = inputOutputConnNum;
                    }
                    for (int c = 0; c < baseConnNum; c++)
                    {
                        listConnections.Add(new NNConnection()
                        {
                            srcNet  = i,
                            destNet = destNetIdx,
                            srcIdx  = c,
                            destIdx = destConnStart + c,
                        });
                    }
                    for (int c = 0; c < baseConnNum; c++)
                    {
                        listConnections.Add(new NNConnection()
                        {
                            srcNet  = i,
                            destNet = destNetIdx + 1,
                            srcIdx  = baseConnNum + c,
                            destIdx = destConnStart + c,
                        });
                    }
                }
                else
                {
                    // connect to inputs
                    for (int c = 0; c < inputOutputConnNum; c++)
                    {
                        listConnections.Add(new NNConnection()
                        {
                            srcNet  = i,
                            destNet = -1, // the IO connections
                            srcIdx  = c,
                            destIdx = idxInLayer * inputOutputConnNum + c,
                        });
                    }
                }
            }
        }
        connections = listConnections.ToArray();

        DebugBrainViewer.inst.SetupTexture(DebugTextureWidthPixels, DebugTextureHeightPixels);
    }