Example #1
0
        /// <summary>
        /// Pick an array element with probability proportional to exp(-cost).
        /// </summary>
        public static int sample_by_costs(Floatarray costs)
        {
            Doublearray p = new Doublearray();

            p.Copy(costs);
            double mincost = NarrayUtil.Min(costs);

            p -= mincost;

            for (int i = 0; i < p.Length(); i++)
            {
                p.UnsafePut1d(i, Math.Exp(-p.UnsafeAt1d(i)));
            }
            double sump = NarrayUtil.Sum(p);

            p /= sump;

            double choice = rnd.NextDouble();
            double s      = 0;

            for (int i = 0; i < p.Length(); i++)
            {
                s += p[i];
                if (choice < s)
                {
                    return(i);
                }
            }

            // shouldn't happen...
            return(costs.Length() - 1);
        }
Example #2
0
        public override float OutputsDense(Floatarray result, Floatarray x_raw)
        {
            CHECK_ARG(x_raw.Length() == w1.Dim(1), "x_raw.Length() == w1.Dim(1)");
            Floatarray z      = new Floatarray();
            int        sparse = PGeti("sparse");
            Floatarray y      = new Floatarray();
            Floatarray x      = new Floatarray();

            x.Copy(x_raw);
            mvmul0(y, w1, x);
            y += b1;
            for (int i = 0; i < y.Length(); i++)
            {
                y[i] = sigmoid(y[i]);
            }
            if (sparse > 0)
            {
                ClassifierUtil.Sparsify(y, sparse);
            }
            mvmul0(z, w2, y);
            z += b2;
            for (int i = 0; i < z.Length(); i++)
            {
                z[i] = sigmoid(z[i]);
            }
            result.Copy(z);
            //int idx = NarrayUtil.ArgMax(result);
            //float val = NarrayUtil.Max(result);
            return(Convert.ToSingle(Math.Abs(NarrayUtil.Sum(z) - 1.0)));
        }
Example #3
0
        public static double beam_search(out string result, Intarray inputs, Floatarray costs, OcroFST fst1, OcroFST fst2,
                                         int beam_width)
        {
            Intarray v1 = new Intarray();
            Intarray v2 = new Intarray();
            Intarray o  = new Intarray();

            //fprintf(stderr,"starting beam search\n");
            beam_search(v1, v2, inputs, o, costs, fst1, fst2, beam_width);
            //fprintf(stderr,"finished beam search\n");
            FstUtil.remove_epsilons(out result, o);
            return(NarrayUtil.Sum(costs));
        }
Example #4
0
        public static double a_star(out string result, OcroFST fst)
        {
            result = "";
            Intarray   inputs   = new Intarray();
            Intarray   vertices = new Intarray();
            Intarray   outputs  = new Intarray();
            Floatarray costs    = new Floatarray();

            if (!a_star(inputs, vertices, outputs, costs, fst))
            {
                return(1e38);
            }
            FstUtil.remove_epsilons(out result, outputs);
            return(NarrayUtil.Sum(costs));
        }
Example #5
0
        public static double Perplexity(Floatarray weights)
        {
            Floatarray w = new Floatarray();

            w.Copy(weights);
            w /= NarrayUtil.Sum(w);
            double total = 0.0;

            for (int i = 0; i < w.Length(); i++)
            {
                float value = w[i];
                total += value * Math.Log(value);
            }
            return(Math.Exp(-total));
        }
Example #6
0
        public static double a_star(out string result, OcroFST fst1, OcroFST fst2)
        {
            result = "";
            Intarray   inputs  = new Intarray();
            Intarray   v1      = new Intarray();
            Intarray   v2      = new Intarray();
            Intarray   outputs = new Intarray();
            Floatarray costs   = new Floatarray();

            if (!a_star_in_composition(inputs, v1, v2, outputs, costs, fst1, fst2))
            {
                return(1e38);
            }
            FstUtil.remove_epsilons(out result, outputs);
            return(NarrayUtil.Sum(costs));
        }
Example #7
0
        public static double Entropy(Floatarray a)
        {
            double z     = NarrayUtil.Sum(a);
            double total = 0.0;

            for (int i = 0; i < a.Length(); i++)
            {
                double p = a[i] / z;
                if (p < 1e-8)
                {
                    continue;
                }
                total += p * Math.Log(p);
            }
            return(-total);
        }
Example #8
0
        /// <summary>
        /// This is a weird, optional method that exposes character segmentation
        /// for those line recognizers that have it segmentation contains colored pixels,
        /// and a transition in the transducer of the form * --- 1/eps --> * --- 2/a --> *
        /// means that pixels with color 1 and 2 together form the letter "a"
        /// </summary>
        public override double RecognizeLine(Intarray segmentation_, IGenericFst result, Bytearray image_)
        {
            double rate = 0.0;

            CHECK_ARG(image_.Dim(1) < PGeti("maxheight"),
                      String.Format("input line too high ({0} x {1})", image_.Dim(0), image_.Dim(1)));
            CHECK_ARG(image_.Dim(1) * 1.0 / image_.Dim(0) < PGetf("maxaspect"),
                      String.Format("input line has bad aspect ratio ({0} x {1})", image_.Dim(0), image_.Dim(1)));
            bool use_reject = PGetb("use_reject") && !DisableJunk;
            //Console.WriteLine("IMG: imin:{0} imax:{1}", NarrayUtil.ArgMin(image_), NarrayUtil.ArgMax(image_));
            Bytearray image = new Bytearray();

            image.Copy(image_);

            SetLine(image_);

            if (PGeti("invert") > 0)
            {
                NarrayUtil.Sub(NarrayUtil.Max(image), image);
            }
            segmentation_.Copy(segmentation);
            Bytearray    available   = new Bytearray();
            Floatarray   cp          = new Floatarray();
            Floatarray   ccosts      = new Floatarray();
            Floatarray   props       = new Floatarray();
            OutputVector p           = new OutputVector();
            int          ncomponents = grouper.Object.Length();
            int          minclass    = PGeti("minclass");
            float        minprob     = PGetf("minprob");
            float        space_yes   = PGetf("space_yes");
            float        space_no    = PGetf("space_no");
            float        maxcost     = PGetf("maxcost");

            // compute priors if possible; fall back on
            // using no priors if no counts are available
            Floatarray priors     = new Floatarray();
            bool       use_priors = PGeti("use_priors") > 0;

            if (use_priors)
            {
                if (counts.Length() > 0)
                {
                    priors.Copy(counts);
                    priors /= NarrayUtil.Sum(priors);
                }
                else
                {
                    if (!counts_warned)
                    {
                        Global.Debugf("warn", "use_priors specified but priors unavailable (old model)");
                    }
                    use_priors    = false;
                    counts_warned = true;
                }
            }

            EstimateSpaceSize();

            for (int i = 0; i < ncomponents; i++)
            {
                Rect      b;
                Bytearray mask = new Bytearray();
                grouper.Object.GetMask(out b, ref mask, i, 0);
                Bytearray cv = new Bytearray();
                grouper.Object.ExtractWithMask(cv, mask, image, i, 0);
                //ImgIo.write_image_gray("extrmask_image.png", cv);
                Floatarray v = new Floatarray();
                v.Copy(cv);
                v /= 255.0f;
                float ccost = classifier.Object.XOutputs(p, v);
                if (use_reject && classifier.Object.HigherOutputIsBetter)
                {
                    ccost = 0;
                    float total = p.Sum();
                    if (total > 1e-11f)
                    {
                        //p /= total;
                    }
                    else
                    {
                        p.Values.Fill(0.0f);
                    }
                }
                int count = 0;

                Global.Debugf("dcost", "output {0}", p.Keys.Length());
                for (int index = 0; index < p.Keys.Length(); index++)
                {
                    int j = p.Keys[index];
                    if (j < minclass)
                    {
                        continue;
                    }
                    if (j == reject_class)
                    {
                        continue;
                    }
                    float value = p.Values[index];
                    if (value <= 0.0f)
                    {
                        continue;
                    }
                    if (value < minprob)
                    {
                        continue;
                    }
                    float pcost = classifier.Object.HigherOutputIsBetter ? (float)-Math.Log(value) : value;
                    Global.Debugf("dcost", "{0} {1} {2}", j, pcost + ccost, (j > 32 ? (char)j : '_'));
                    float total_cost = pcost + ccost;
                    if (total_cost < maxcost)
                    {
                        if (use_priors)
                        {
                            total_cost -= (float)-Math.Log(priors[j]);
                        }
                        grouper.Object.SetClass(i, j, total_cost);
                        count++;
                    }
                }
                Global.Debugf("dcost", "");

                if (count == 0)
                {
                    float xheight = 10.0f;
                    if (b.Height() < xheight / 2 && b.Width() < xheight / 2)
                    {
                        grouper.Object.SetClass(i, (int)'~', high_cost / 2);
                    }
                    else
                    {
                        grouper.Object.SetClass(i, (int)'#', (b.Width() / xheight) * high_cost);
                    }
                }
                if (grouper.Object.PixelSpace(i) > space_threshold)
                {
                    Global.Debugf("spaces", "space {0}", grouper.Object.PixelSpace(i));
                    grouper.Object.SetSpaceCost(i, space_yes, space_no);
                }
            }

            grouper.Object.GetLattice(result);
            return(rate);
        }
Example #9
0
        public override void Info()
        {
            bool bak = Logger.Default.verbose;

            Logger.Default.verbose = true;
            Logger.Default.WriteLine("Linerec");
            PPrint();
            Logger.Default.WriteLine(String.Format("segmenter: {0}", segmenter.IsEmpty ? "null" : segmenter.Object.Description));
            Logger.Default.WriteLine(String.Format("grouper: {0}", grouper.IsEmpty ? "null" : grouper.Object.Description));
            Logger.Default.WriteLine(String.Format("counts: {0} {1}", counts.Length(), NarrayUtil.Sum(counts)));
            //classifier.Object.Info();
            Logger.Default.verbose = bak;
        }