public static void TestTanhLearningOnSinus() { NNetwork network = NNetwork.HyperbolicNetwork(new int[] { 1, 2, 1 }); network.RandomizeWeights(1, 2); NetworkTrainer trainer = new NetworkTrainer(network); double[][] inputs = SinusTrainSet()[0]; double[][] outputs = SinusTrainSet()[1]; double error = 1; double delta = 1; int j = 0; for (; error > 0.01 && !(delta <= 0.000001) || j == 1; j++) { trainer.TrainClassification(inputs, outputs); double new_cost = trainer.GetError(); delta = error - new_cost; error = new_cost; } double[][] input_test = SinusTrainSet(20)[0]; double[][] output_test = SinusTrainSet(20)[1]; trainer.IsLearning = false; trainer.TrainClassification(input_test, output_test); error = trainer.GetError(); Console.Out.WriteLine(error); for (int i = 0; i < input_test.Length; i++) { network.SetInput(input_test[i]); Show(new [] { input_test[i][0], network.GetOutput()[0], Math.Sin(input_test[i][0]) }); } }
private void buttonRandomize_Click(object sender, EventArgs e) { int seed = int.Parse(textSeed.Text); network.RandomizeWeights(seed); groupData.Enabled = true; }
public void TestRandomInit() { NNetwork n = NNetwork.SigmoidNetwork(new int[] { 2, 3, 2 }); n.RandomizeWeights(seed: 0); var first = n.GetWeightMatrix(); n.RandomizeWeights(seed: 0); var equal = n.GetWeightMatrix(); Assert.AreEqual(first, equal); n.RandomizeWeights(seed: 1); var not_equal = n.GetWeightMatrix(); Assert.AreNotEqual(first, not_equal); }
public void TestTanhDerivative() { // SO-SO test =( NNetwork n = NNetwork.HyperbolicNetwork(new int[] { 2, 2, 1 }); n.RandomizeWeights(-1, 10); Random random = new Random(); double x; double y; double z; x = random.NextDouble(); y = random.NextDouble(); z = some_function(x, y); n.SetInput(new double[] { x, y }); n.SetAnswers(new double[] { z }); n.BackPropagate(); double[] ders = n.Derivatives(); double[] ests = n.Estimation(0.0001); var koeff = ests[0] / ders[0]; for (int i = 0; i < ders.Length; i++) { MyAssert.CloseTo(ests[i] / ders[i], koeff, 0.00001); } }
public void TestTanhLearningOnSinus() { NNetwork network = NNetwork.HyperbolicNetwork(new int[] { 1, 2, 1 }); network.RandomizeWeights(1, 2); NetworkTrainer trainer = new NetworkTrainer(network); double[][] inputs = SinusTrainSet()[0]; double[][] outputs = SinusTrainSet()[1]; double error = 1; double delta = 1; int j = 0; for (; error > 0.01 && !(delta <= 0.000001) || j == 1; j++) { trainer.TrainClassification(inputs, outputs); double new_cost = trainer.GetError(); delta = error - new_cost; error = new_cost; } double[][] input_test = SinusTrainSet(20)[0]; double[][] output_test = SinusTrainSet(20)[1]; trainer.IsLearning = false; trainer.TrainClassification(input_test, output_test); error = trainer.GetError(); Assert.Less(error, 0.53); }
public static void TestTanhDerivative() { NNetwork n = NNetwork.HyperbolicNetwork(new int[] { 2, 2, 1 }); n.RandomizeWeights(-1, 10); Random random = new Random(); double x; double y; double z; x = random.NextDouble(); y = random.NextDouble(); z = some_function(x, y); n.SetInput(new double[] { x, y }); n.SetAnswers(new double[] { z }); n.BackPropagate(); double[] ders = n.Derivatives(); double[] ests = n.Estimation(0.0001); for (int i = 0; i < ders.Length; i++) { Show(new[] { ders[i], ests[i], ests[i] / ders[i] }); } }
// public static void Main() // { // TrainPrediction(); //// Sinus(); //// TestTanhLearningOnSinus(); //// TestTanhDerivative(); // // } public static void TrainPrediction() { NNetwork network = NNetwork.SigmoidNetwork(new int[] { 5, 1 }); network.RandomizeWeights(-1, 20); NetworkTrainer trainer = new NetworkTrainer(network); List <double> tr = new List <double>(); for (double i = 0; i <= 1; i = i + 0.05) { tr.Add(i); } double[] train_set = tr.ToArray();//new double[] { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 }; double error = 1; double delta = 1; int j = 0; for (; error > 0.01 && !(delta <= 0.00001) || j == 1; j++) { trainer.TrainPrediction(train_set, 0.0001, 0.2); double new_cost = trainer.GetError(); delta = error - new_cost; error = new_cost; } Console.Out.WriteLine(j + ": " + error); for (double i = 0; i <= 0.5; i = i + 0.05) { network.SetInput(new double[] { i + 0.0, i + 0.1, i + 0.2, i + 0.3, i + 0.4 }); Show(new double[] { i + 0.5, network.GetOutput()[0], // network.GetOutput()[1] }); } }
public void TestDerivative() { //Fails with square error function NNetwork n = NNetwork.SigmoidNetwork(new int[] { 2, 2, 1 }); n.RandomizeWeights(-1, 10); Random random = new Random(); double x; double y; double z; x = random.NextDouble(); y = random.NextDouble(); z = some_function(x, y); n.SetInput(new double[] { x, y }); n.SetAnswers(new double[] { z }); n.BackPropagate(); double[] ders = n.Derivatives(); double[] ests = n.Estimation(0.0001); for (int i = 0; i < ders.Length; i++) { MyAssert.CloseTo(ders[i], ests[i], 0.0001); } }