Example #1
0
        private void NeuralNet(bool _training)
        {
            inputs[0] = Horses[0].age;
            inputs[1] = Horses[0]._speed;
            inputs[2] = Horses[0]._movesPerRace;

            if (_training == true)
            {
                Mn.Train(Horses[0]._previousRaceMoves);
            }

            Mn.StartNN(inputs);

            prediction = Mn._FinalOutPut[0] * 100;

            Console.WriteLine("Prediction for next race is: " + Math.Round(prediction));
            Console.ReadKey();
        }
Example #2
0
        private void RunNeuralNet()
        {
            bool run = true;

            while (run == true)
            {
                bool IsValid         = false;
                int  InputLayerSize  = 0;
                int  NumHiddenLayers = 0;
                char c1 = '0';
                Console.Clear();
                Console.WriteLine("Basic Neural Network, or Multilayer? 1/2");

                while (IsValid == false)
                {
                    string input = Console.ReadLine();
                    if (Tools.Validation.validMenuFormat12(input) == true)
                    {
                        IsValid = true;
                        c1      = char.Parse(input);
                        Console.Clear();
                        Console.WriteLine("How many Inputs?");
                        InputLayerSize = int.Parse(Console.ReadLine());

                        if (c1 == '2')
                        {
                            Console.WriteLine("How many Hidden Layers?");
                            NumHiddenLayers = int.Parse(Console.ReadLine());
                        }
                        else if (c1 == '1')
                        {
                            NumHiddenLayers = 0;
                        }
                    }
                }

                Console.WriteLine("How many Hidden Neurons per Layer?");
                int HiddenLayerSize = int.Parse(Console.ReadLine());

                Console.WriteLine("How many Outputs?");
                int OutputLayerSize = int.Parse(Console.ReadLine());

                Console.WriteLine("Display Weights at end? Y/N");

                char c2 = Console.ReadKey().KeyChar;

                Console.Clear();

                Display d = new Display();

                switch (c1)
                {
                case '1':
                    Standard(InputLayerSize, HiddenLayerSize, OutputLayerSize, c2, d);
                    break;

                case '2':
                    Experimental(InputLayerSize, NumHiddenLayers, HiddenLayerSize, OutputLayerSize, c2, d);
                    break;
                }

                Console.WriteLine(" ");
                Console.WriteLine("Quit? Y/N");
                char q = Console.ReadKey().KeyChar;

                switch (q)
                {
                case 'y':
                    run = false;
                    break;

                case 'n':
                    run = true;
                    break;
                }
            }

            Console.ReadKey();


            void Standard(int _InputLayerSize, int _HiddenLayerSize, int _OutputLayerSize, char _c2, Display _d)
            {
                SingleHiddenLayerNN nn = new SingleHiddenLayerNN(_InputLayerSize, _HiddenLayerSize, _OutputLayerSize);

                Console.ReadKey();
                if (_c2 == 'y')
                {
                    _d.StandardNN(nn._inputNeurons, nn._hiddenNeurons);
                }
            }

            void Experimental(int _InputLayerSize, int _NumHiddenLayers, int _HiddenLayerSize, int _OutputLayerSize, char _c2, Display _d)
            {
                bool IsValid;

                double[] inputs = new double[_InputLayerSize];
                for (int i = 0; i < _InputLayerSize; i++)
                {
                    Console.Clear();
                    Console.WriteLine("Please enter input values: " + (i + 1));
                    inputs[i] = double.Parse(Console.ReadLine());
                }


                MultilayerNeuralNet Enn = new MultilayerNeuralNet(_InputLayerSize, _NumHiddenLayers, _HiddenLayerSize, _OutputLayerSize);

                Enn.StartNN(inputs);

                double[] outputValues = Enn._FinalOutPut;

                int j = 1;

                foreach (double value in outputValues)
                {
                    Console.Clear();
                    foreach (double ivalue in inputs)
                    {
                        Console.WriteLine("Input: " + ivalue);
                    }
                    Console.WriteLine("Final Output " + j + ": " + (value * 100));
                    j++;
                }

                Console.WriteLine("Train? Y/N");
                IsValid = false;
                while (IsValid == false)
                {
                    string input = Console.ReadLine();

                    if (Tools.Validation.validMenuFormatYN(input) == true)
                    {
                        IsValid = true;
                        char c = char.Parse(input);
                        switch (c)
                        {
                        case 'y':
                        case 'Y':
                            Console.WriteLine("How many training iterations?");
                            int t = int.Parse(Console.ReadLine());
                            Console.WriteLine("What was the target value?");
                            int target = int.Parse(Console.ReadLine());
                            for (int tr = 0; tr < t; tr++)
                            {
                                Enn.Train(target);
                                Enn.StartNN(inputs);
                                outputValues = Enn._FinalOutPut;
                                int i = 1;
                                foreach (double value in outputValues)
                                {
                                    foreach (double ivalue in inputs)
                                    {
                                        Console.WriteLine("Input: " + ivalue);
                                    }
                                    Console.WriteLine("Final Output " + i + ": " + (value * 100));
                                    j++;
                                }
                            }
                            break;

                        case 'n':
                        case 'N':
                            break;
                        }
                    }
                }
                Console.ReadKey();
                if (_c2 == 'y')
                {
                    _d.ExperimentalNN(Enn._Neurons);
                }
            }
        }