/// <summary> /// Layouts a connected graph with Multidimensional Scaling, using /// shortest-path distances as Euclidean target distances. /// </summary> /// <param name="geometryGraph">A graph.</param> /// <param name="settings">The settings for the algorithm.</param> /// <param name="x">Coordinate vector.</param> /// <param name="y">Coordinate vector.</param> internal static void LayoutGraphWithMds(GeometryGraph geometryGraph, MdsLayoutSettings settings, out double[] x, out double[] y) { x = new double[geometryGraph.Nodes.Count]; y = new double[geometryGraph.Nodes.Count]; if (geometryGraph.Nodes.Count == 0) { return; } if (geometryGraph.Nodes.Count == 1) { x[0] = y[0] = 0; return; } int k = Math.Min(settings.PivotNumber, geometryGraph.Nodes.Count); int iter = settings.GetNumberOfIterationsWithMajorization(geometryGraph.Nodes.Count); double exponent = settings.Exponent; var pivotArray = new int[k]; PivotDistances pivotDistances = new PivotDistances(geometryGraph, false, pivotArray); pivotDistances.Run(); double[][] c = pivotDistances.Result; MultidimensionalScaling.LandmarkClassicalScaling(c, out x, out y, pivotArray); ScaleToAverageEdgeLength(geometryGraph, x, y); if (iter > 0) { AllPairsDistances apd = new AllPairsDistances(geometryGraph, false); apd.Run(); double[][] d = apd.Result; double[][] w = MultidimensionalScaling.ExponentialWeightMatrix(d, exponent); // MultidimensionalScaling.DistanceScaling(d, x, y, w, iter); MultidimensionalScaling.DistanceScalingSubset(d, x, y, w, iter); } }
void SetNodePositionsAndMovedBoundaries() { int pivotNumber = Math.Min(graph.Nodes.Count,settings.PivotNumber); double scaleX = settings.ScaleX; double scaleY = settings.ScaleY; int[] pivotArray = new int[pivotNumber]; PivotDistances pivotDistances = new PivotDistances(graph, false, pivotArray); pivotDistances.Run(); double[][] c = pivotDistances.Result; double[] x, y; MultidimensionalScaling.LandmarkClassicalScaling(c, out x, out y, pivotArray); Standardize(x); double[] p = Centrality.PageRank(graph, .85, false); // double[] q = Centrality.PageRank(graph, .85, true); Standardize(p); // Standardize(q); int index = 0; foreach (Node node in graph.Nodes) { node.Center = new Point((int) (x[index]*scaleX), (int) (Math.Sqrt(p[index])*scaleY)); index++; } OverlapRemoval.RemoveOverlaps(graph.Nodes.ToArray(), settings.NodeSeparation); }
public static void Main() { modshogun.init_shogun_with_defaults(); double[,] data = Load.load_numbers("../data/fm_train_real.dat"); RealFeatures features = new RealFeatures(data); MultidimensionalScaling mds = new MultidimensionalScaling(); mds.set_target_dim(1); mds.set_landmark(false); mds.apply(features); }
public void MdsReturnsCorrectResult() { ILArray <double> dist = ILMath.zeros(3, 3); dist[1, 0] = 4.94760097137838; dist[2, 0] = 3.48822665076897; dist[0, 1] = 4.94760097137838; dist[2, 1] = 5.07828347170446; dist[0, 2] = 3.48822665076897; dist[1, 2] = 5.07828347170446; MultidimensionalScaling.Scale(dist); Assert.IsTrue(false); }
private static Point eigenSystem2(Point[] B, out Point[] Q) { double[][] b = new double[B.Length][]; for (int i = 0; i < B.Length; i++) { b[i] = new double[2]; b[i][0] = B[i].X; b[i][1] = B[i].Y; } double lambda1; double[] q1; double lambda2; double[] q2; MultidimensionalScaling.SpectralDecomposition(b, out q1, out lambda1, out q2, out lambda2, 300, 1e-8); Q = new Point[] { new Point(q1[0], q1[1]), new Point(q2[0], q2[1]) }; return(new Point(lambda1, lambda2)); }
public void TestGoodnessOfFit() { double stress; DoubleMatrix distances3 = new DoubleMatrix(3, 3); // Example 1: A right triangle distances3[0, 1] = distances3[1, 0] = 3; distances3[0, 2] = distances3[2, 0] = 4; distances3[1, 2] = distances3[2, 1] = 5; stress = MultidimensionalScaling.CalculateNormalizedStress(distances3, MultidimensionalScaling.KruskalShepard(distances3)); Assert.IsTrue(stress < 0.1); // Example 2: An arbitrary triangle distances3[0, 1] = distances3[1, 0] = 8; distances3[0, 2] = distances3[2, 0] = 6.4; distances3[1, 2] = distances3[2, 1] = 5; DoubleMatrix coords3 = MultidimensionalScaling.KruskalShepard(distances3); Console.WriteLine("Coordinates: "); Console.WriteLine("A = ({0}, {1}), B = ({2}, {3}), C = ({4}, {5})", coords3[0, 0], coords3[0, 1], coords3[1, 0], coords3[1, 1], coords3[2, 0], coords3[2, 1]); stress = MultidimensionalScaling.CalculateNormalizedStress(distances3, coords3); Console.WriteLine("Stress = " + stress.ToString(CultureInfo.InvariantCulture.NumberFormat)); Assert.IsTrue(stress < 0.1); DoubleMatrix distances4 = new DoubleMatrix(4, 4); // Example 3: A small square distances4[0, 1] = distances4[1, 0] = 1; distances4[0, 2] = distances4[2, 0] = Math.Sqrt(2); distances4[0, 3] = distances4[3, 0] = 1; distances4[1, 2] = distances4[2, 1] = 1; distances4[1, 3] = distances4[3, 1] = Math.Sqrt(2); distances4[2, 3] = distances4[3, 2] = 1; stress = MultidimensionalScaling.CalculateNormalizedStress(distances4, MultidimensionalScaling.KruskalShepard(distances4)); Assert.IsTrue(stress < 0.1); // Example 4: A large square distances4[0, 1] = distances4[1, 0] = 1000; distances4[0, 2] = distances4[2, 0] = Math.Sqrt(2000000); distances4[0, 3] = distances4[3, 0] = 1000; distances4[1, 2] = distances4[2, 1] = 1000; distances4[1, 3] = distances4[3, 1] = Math.Sqrt(2000000); distances4[2, 3] = distances4[3, 2] = 1000; stress = MultidimensionalScaling.CalculateNormalizedStress(distances4, MultidimensionalScaling.KruskalShepard(distances4)); Assert.IsTrue(stress < 0.1); // Example 5: An arbitrary cloud of 8 points in a plane DoubleMatrix distancesK = GetDistances(new double[, ] { { 2, 1 }, { 5, 2 }, { 7, 1 }, { 4, 0 }, { 3, 3 }, { 4, 2 }, { 1, 8 }, { 6, 3 } }); stress = MultidimensionalScaling.CalculateNormalizedStress(distancesK, MultidimensionalScaling.KruskalShepard(distancesK)); Assert.IsTrue(stress < 0.1); // Example 6: A tetrahedron distancesK = GetDistances(new double[, ] { { 0, 0, 0 }, { 4, 0, 0 }, { 2, 3.4641, 0 }, { 2, 1.1547, 3.2660 } }); stress = MultidimensionalScaling.CalculateNormalizedStress(distancesK, MultidimensionalScaling.KruskalShepard(distancesK)); Assert.IsTrue(stress < 0.1); // Example 7: A matrix of perceived dissimilarities between 14 colors, published in the literature distancesK = new DoubleMatrix(new double[, ] { { 0.00, 0.14, 0.58, 0.58, 0.82, 0.94, 0.93, 0.96, 0.98, 0.93, 0.91, 0.88, 0.87, 0.84 }, { 0.14, 0.00, 0.50, 0.56, 0.78, 0.91, 0.93, 0.93, 0.98, 0.96, 0.93, 0.89, 0.87, 0.86 }, { 0.58, 0.50, 0.00, 0.19, 0.53, 0.83, 0.90, 0.92, 0.98, 0.99, 0.98, 0.99, 0.95, 0.97 }, { 0.58, 0.56, 0.19, 0.00, 0.46, 0.75, 0.90, 0.91, 0.98, 0.99, 1.00, 0.99, 0.98, 0.96 }, { 0.82, 0.78, 0.53, 0.46, 0.00, 0.39, 0.69, 0.74, 0.93, 0.98, 0.98, 0.99, 0.98, 1.00 }, { 0.94, 0.91, 0.83, 0.75, 0.39, 0.00, 0.38, 0.55, 0.86, 0.92, 0.98, 0.98, 0.98, 0.99 }, { 0.93, 0.93, 0.90, 0.90, 0.69, 0.38, 0.00, 0.27, 0.78, 0.86, 0.95, 0.98, 0.98, 1.00 }, { 0.96, 0.93, 0.92, 0.91, 0.74, 0.55, 0.27, 0.00, 0.67, 0.81, 0.96, 0.97, 0.98, 0.98 }, { 0.98, 0.98, 0.98, 0.98, 0.93, 0.86, 0.78, 0.67, 0.00, 0.42, 0.63, 0.73, 0.80, 0.77 }, { 0.93, 0.96, 0.99, 0.99, 0.98, 0.92, 0.86, 0.81, 0.42, 0.00, 0.26, 0.50, 0.59, 0.72 }, { 0.91, 0.93, 0.98, 1.00, 0.98, 0.98, 0.95, 0.96, 0.63, 0.26, 0.00, 0.24, 0.38, 0.45 }, { 0.88, 0.89, 0.99, 0.99, 0.99, 0.98, 0.98, 0.97, 0.73, 0.50, 0.24, 0.00, 0.15, 0.32 }, { 0.87, 0.87, 0.95, 0.98, 0.98, 0.98, 0.98, 0.98, 0.80, 0.59, 0.38, 0.15, 0.00, 0.24 }, { 0.84, 0.86, 0.97, 0.96, 1.00, 0.99, 1.00, 0.98, 0.77, 0.72, 0.45, 0.32, 0.24, 0.00 } }); stress = MultidimensionalScaling.CalculateNormalizedStress(distancesK, MultidimensionalScaling.KruskalShepard(distancesK)); Assert.IsTrue(stress < 0.1); }