public static Image <Arthmetic, double> K(List <Mat> mats, Feature2D detector, Feature2D descriptor, DistanceType distanceType, double maxDistance)
        {
            List <Image <Arthmetic, double> > Fs = new List <Image <Arthmetic, double> >();

            for (int i = 0; i < mats.Count - 1; i += 2)
            {
                var match = MatchImagePair.Match(mats[i], mats[i + 1], detector, descriptor, distanceType, maxDistance);
                var F     = ComputeMatrix.F(match.LeftPoints, match.RightPoints);
                if (F == null)
                {
                    continue;
                }
                Fs.Add(F);
            }
            return(K(Fs, mats[0].Width, mats[0].Height));
        }
Example #2
0
        public void ProcessImages(Mat left, Mat right, Feature2D detector, Feature2D descriptor, DistanceType distanceType, double takeBest)
        {
            var match = MatchImagePair.Match(left, right, detector, descriptor, distanceType, 20.0);

            DrawFeatures(left, right, match, takeBest);

            var lps = match.LeftPointsList.Take((int)(match.LeftPoints.Size * takeBest));
            var rps = match.RightPointsList.Take((int)(match.RightPoints.Size * takeBest));

            var F = ComputeMatrix.F(new VectorOfPointF(lps.ToArray()), new VectorOfPointF(rps.ToArray()));
            var K = EstimateCameraFromImagePair.K(F, left.Width, right.Height);
            var E = ComputeMatrix.E(F, K);

            FindTransformation.DecomposeToRTAndTriangulate(lps.ToList(), rps.ToList(), K, E,
                                                           out Image <Arthmetic, double> R, out Image <Arthmetic, double> t, out Image <Arthmetic, double> X);
            PrintMatricesInfo(E, K, R, t);
        }
Example #3
0
        public static OdometerFrame GetOdometerFrame(Mat left, Mat right, Feature2D detector, Feature2D descriptor, DistanceType distanceType, double maxDistance, Image <Arthmetic, double> K, double takeBest = 1.0)
        {
            var match = MatchImagePair.Match(left, right, detector, descriptor, distanceType, maxDistance);

            var lps = match.LeftPointsList.Take((int)(match.LeftPoints.Size * takeBest));
            var rps = match.RightPointsList.Take((int)(match.RightPoints.Size * takeBest));

            var lps_n = lps.ToList();
            var rps_n = rps.ToList();
            var H     = EstimateHomography(lps_n, rps_n, K);

            if (IsPureRotation(H))
            {
                OdometerFrame odometerFrame = new OdometerFrame();
                odometerFrame.Rotation       = RotationConverter.MatrixToEulerXYZ(H);
                odometerFrame.RotationMatrix = RotationConverter.EulerXYZToMatrix(odometerFrame.Rotation);
                odometerFrame.MatK           = K;
                odometerFrame.Match          = match;
                odometerFrame.Translation    = new Image <Arthmetic, double>(1, 3);
                return(odometerFrame);
            }
            else
            {
                if (!FindTwoViewsMatrices(lps_n, rps_n, K, out var F, out var E, out var R, out var t, out var X))
                {
                    return(null);
                }

                OdometerFrame odometerFrame = new OdometerFrame();
                odometerFrame.Rotation       = RotationConverter.MatrixToEulerXYZ(R);
                odometerFrame.RotationMatrix = R;
                odometerFrame.MatK           = K;
                odometerFrame.Match          = match;

                Image <Arthmetic, double> C = R.T().Multiply(t).Mul(-1);
                odometerFrame.Translation = C.Mul(1.0 / C.Norm);
                return(odometerFrame);
            }
        }
        public void ProcessImages(Mat left, Mat middle, Mat right, Feature2D detector, Feature2D descriptor, DistanceType distance)
        {
            double maxDistance = 20.0;
            var    match12     = MatchImagePair.Match(left, middle, detector, descriptor, distance, maxDistance);
            var    match23     = MatchImagePair.Match(middle, right, detector, descriptor, distance, maxDistance);
            var    match13     = MatchImagePair.Match(left, right, detector, descriptor, distance, maxDistance);

            TripletMatch tmatch = new TripletMatch();

            List <MDMatch> m12 = new List <MDMatch>();
            List <MDMatch> m23 = new List <MDMatch>();

            var left1    = match12.LeftPoints;
            var right1   = match12.RightPoints;
            var left2    = match23.LeftPoints;
            var left2_X  = MatchClosePoints.SortByX(match23.LeftPoints);
            var right2   = match23.RightPoints;
            var left3    = match13.LeftPoints;
            var right3   = match13.RightPoints;
            var right3_X = MatchClosePoints.SortByX(match13.LeftPoints);

            for (int idx12 = 0; idx12 < left1.Size; ++idx12)
            {
                var p1    = left1[idx12];
                var p2    = right1[idx12];
                int idx23 = IndexOf_X(left2_X, p2);
                if (idx23 != -1)
                {
                    var p3    = right2[idx23];
                    int idx13 = IndexOf_X(right3_X, p1);
                    if (idx13 != -1)
                    {
                        if (AreEqual(left1[idx12], left3[idx13]))
                        {
                            tmatch.Left.Add(p1);
                            tmatch.Middle.Add(p2);
                            tmatch.Right.Add(p3);

                            m12.Add(match12.Matches[idx12]);
                            m23.Add(match23.Matches[idx23]);
                        }
                    }
                }
            }

            match12.Matches = new VectorOfDMatch(m12.ToArray());
            match23.Matches = new VectorOfDMatch(m23.ToArray());

            MatchDrawer.DrawFeatures(left, right, match12, 1.0, bottomView);
            MatchDrawer.DrawFeatures(left, right, match23, 1.0, upperView);

            var F12 = ComputeMatrix.F(new VectorOfPointF(tmatch.Left.ToArray()), new VectorOfPointF(tmatch.Middle.ToArray()));
            var F23 = ComputeMatrix.F(new VectorOfPointF(tmatch.Middle.ToArray()), new VectorOfPointF(tmatch.Right.ToArray()));
            var F13 = ComputeMatrix.F(new VectorOfPointF(tmatch.Left.ToArray()), new VectorOfPointF(tmatch.Right.ToArray()));

            if (F12 == null || F23 == null || F13 == null)
            {
                info.Text = "Too few matches";
                return;
            }

            var Fs = new List <Image <Arthmetic, double> > {
                F12, F23, F13
            };

            var K = EstimateCameraFromImageSequence.K(Fs, left.Width, right.Height);

            var Es = new List <Image <Arthmetic, double> >
            {
                ComputeMatrix.E(F12, K),
                ComputeMatrix.E(F23, K),
                ComputeMatrix.E(F13, K)
            };

            FindTransformation.DecomposeToRTAndTriangulate(tmatch.Left, tmatch.Middle, K, Es[0],
                                                           out Image <Arthmetic, double> R12, out Image <Arthmetic, double> t12, out Image <Arthmetic, double> X12);
            FindTransformation.DecomposeToRTAndTriangulate(tmatch.Middle, tmatch.Right, K, Es[1],
                                                           out Image <Arthmetic, double> R23, out Image <Arthmetic, double> t23, out Image <Arthmetic, double> X23);
            FindTransformation.DecomposeToRTAndTriangulate(tmatch.Left, tmatch.Right, K, Es[2],
                                                           out Image <Arthmetic, double> R13, out Image <Arthmetic, double> t13, out Image <Arthmetic, double> X13);

            var Rs = new List <Image <Arthmetic, double> >
            {
                RotationConverter.MatrixToEulerXYZ(R12),
                RotationConverter.MatrixToEulerXYZ(R23),
                RotationConverter.MatrixToEulerXYZ(R13)
            };
            var ts = new List <Image <Arthmetic, double> >
            {
                t12,
                t23,
                t13
            };

            PrintMatricesInfo(Es, K, Rs, ts);
        }
Example #5
0
        private void UdpateFrame(int n)
        {
            if (Frames == null || n >= Frames.Count - Step || n < 0)
            {
                isRunning = false;
                nextFrameTimer.Stop();
                return;
            }

            Dispatcher.BeginInvoke((Action)(() =>
            {
                currentFrame = n;

                try
                {
                    var frame = frames[n];
                    var frame2 = frames[n + Step];

                    frame = Undistort(frame);
                    frame2 = Undistort(frame2);

                    var mat = frame.ToImage <Bgr, byte>();
                    var mat2 = frame2.ToImage <Bgr, byte>();

                    double maxDistance = MaxDistance(frame);

                    Func <int, int, MatchingResult> matcher = (i1, i2) =>
                    {
                        if (!features.TryGetValue(i1, out var features1))
                        {
                            MatchImagePair.FindFeatures(frames[i1], Detector, Descriptor, out MKeyPoint[] kps1, out Mat desc1);
                            features1 = new MatchingResult()
                            {
                                LeftKps = kps1,
                                LeftDescriptors = desc1
                            };
                        }

                        if (!features.TryGetValue(i2, out var features2))
                        {
                            MatchImagePair.FindFeatures(frames[i2], Detector, Descriptor, out MKeyPoint[] kps2, out Mat desc2);
                            features2 = new MatchingResult()
                            {
                                LeftKps = kps2,
                                LeftDescriptors = desc2
                            };
                        }

                        return(MatchImagePair.Match(features1.LeftKps, features1.LeftDescriptors, features2.LeftKps, features2.LeftDescriptors, DistanceType, maxDistance));
                    };

                    OdometerFrame odometerFrame = scaler.NextFrame(n, n + Step, matcher);
                    // OdometerFrame odometerFrame = FindTransformation.GetOdometerFrame(mat.Mat, mat2.Mat, Detector, Descriptor, DistanceType, maxDistance, K);
                    if (odometerFrame != null)
                    {
                        videoViewer.Source = ImageLoader.ImageSourceForBitmap(frame.Bitmap);
                        recursive = true;
                        frameProgression.Value = n;
                        recursive = false;
                        frameCurrentLabel.Content = n;

                        totalRotation = odometerFrame.RotationMatrix.Multiply(totalRotation);
                        var rotationEuler = RotationConverter.MatrixToEulerXYZ(totalRotation);
                        totalTranslation = totalTranslation + odometerFrame.Translation;

                        infoComputed.Text = FormatInfo(odometerFrame.Translation, odometerFrame.Rotation, "Comp Diff");
                        infoComputedCumulative.Text = FormatInfo(totalTranslation, rotationEuler, "Comp Cumulative");
                        infoK.Text = FormatInfoK(odometerFrame);

                        MatchDrawer.DrawFeatures(mat.Mat, mat2.Mat, odometerFrame.Match, TakeBest, matchedView);
                    }
                }
                catch (Exception e)
                {
                    infoComputed.Text = "Error!";
                }

                if (isRunning)
                {
                    nextFrameTimer.Start();
                }
            }));
        }
Example #6
0
        public static OdometerFrame GetOdometerFrame3(
            Mat left, Mat middle, Mat right, double lastScale, out double thisScale,
            Feature2D detector, Feature2D descriptor, DistanceType distanceType, double maxDistance,
            Image <Arthmetic, double> K, double takeBest = 1.0)
        {
            thisScale = lastScale;

            var match12 = MatchImagePair.Match(left, middle, detector, descriptor, distanceType, maxDistance);
            var match23 = MatchImagePair.Match(middle, right, detector, descriptor, distanceType, maxDistance);
            var match13 = MatchImagePair.Match(left, right, detector, descriptor, distanceType, maxDistance);

            var left1    = match12.LeftPoints;
            var right1   = match12.RightPoints;
            var left2    = match23.LeftPoints;
            var left2_X  = MatchClosePoints.SortByX(match23.LeftPoints);
            var right2   = match23.RightPoints;
            var left3    = match13.LeftPoints;
            var right3   = match13.RightPoints;
            var right3_X = MatchClosePoints.SortByX(match13.LeftPoints);

            TripletMatch tmatch = new TripletMatch();

            List <MDMatch> m12 = new List <MDMatch>();
            List <MDMatch> m23 = new List <MDMatch>();

            for (int idx12 = 0; idx12 < left1.Size; ++idx12)
            {
                var p1    = left1[idx12];
                var p2    = right1[idx12];
                int idx23 = IndexOf_X(left2_X, p2);
                if (idx23 != -1)
                {
                    var p3    = right2[idx23];
                    int idx13 = IndexOf_X(right3_X, p1);
                    if (idx13 != -1)
                    {
                        if (AreEqual(left1[idx12], left3[idx13], maxDistance))
                        {
                            tmatch.Left.Add(p1);
                            tmatch.Middle.Add(p2);
                            tmatch.Right.Add(p3);

                            m12.Add(match12.Matches[idx12]);
                            m23.Add(match23.Matches[idx23]);
                        }
                    }
                }
            }

            match12.Matches = new VectorOfDMatch(m12.ToArray());
            match23.Matches = new VectorOfDMatch(m23.ToArray());

            var F12 = ComputeMatrix.F(new VectorOfPointF(tmatch.Left.ToArray()), new VectorOfPointF(tmatch.Middle.ToArray()));
            //  var F23 = ComputeMatrix.F(new VectorOfPointF(tmatch.Middle.ToArray()), new VectorOfPointF(tmatch.Right.ToArray()));
            var F13 = ComputeMatrix.F(new VectorOfPointF(tmatch.Left.ToArray()), new VectorOfPointF(tmatch.Right.ToArray()));

            if (F12 == null || F13 == null)
            {
                return(null);
            }

            var Es = new List <Image <Arthmetic, double> >
            {
                ComputeMatrix.E(F12, K),
                //  ComputeMatrix.E(F23, K),
                ComputeMatrix.E(F13, K)
            };

            FindTransformation.DecomposeToRTAndTriangulate(tmatch.Left, tmatch.Middle, K, Es[0],
                                                           out Image <Arthmetic, double> R12, out Image <Arthmetic, double> t12, out Image <Arthmetic, double> X12);
            // FindTransformation.DecomposeToRT(Es[1], out Image<Arthmetic, double> R23, out Image<Arthmetic, double> t23);
            FindTransformation.DecomposeToRTAndTriangulate(tmatch.Left, tmatch.Right, K, Es[1],
                                                           out Image <Arthmetic, double> R13, out Image <Arthmetic, double> t13, out Image <Arthmetic, double> X13);

            var Rs = new List <Image <Arthmetic, double> >
            {
                R12,
                R13
            };
            var ts = new List <Image <Arthmetic, double> >
            {
                t12,
                t13
            };

            var cc = ComputeCameraCenter3(K, Rs, ts, tmatch);

            OdometerFrame odometerFrame = new OdometerFrame();

            odometerFrame.Rotation       = RotationConverter.MatrixToEulerXYZ(Rs[0]);
            odometerFrame.RotationMatrix = Rs[0];
            odometerFrame.MatK           = K;
            odometerFrame.Match          = match12;

            //    Image<Arthmetic, double> C = ComputeCameraCenter(R, t, K, match);
            //  odometerFrame.Translation = R.Multiply(C);
            //   odometerFrame.Translation = R.T().Multiply(odometerFrame.Translation);
            odometerFrame.Translation = ts[0].Mul(lastScale / ts[0].Norm);
            odometerFrame.Center      = lastScale * cc.C12;
            thisScale = cc.Ratio3To2;

            return(odometerFrame);
        }