/// <summary> /// Postprocess the specified frame, outs and net. /// </summary> /// <param name="frame">Frame.</param> /// <param name="outs">Outs.</param> /// <param name="net">Net.</param> protected virtual void postprocess(Mat frame, List <Mat> outs, Net net) { string outLayerType = outBlobTypes[0]; List <int> classIdsList = new List <int>(); List <float> confidencesList = new List <float>(); List <Rect2d> boxesList = new List <Rect2d>(); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] if (outs.Count == 1) { outs[0] = outs[0].reshape(1, (int)outs[0].total() / 7); //Debug.Log ("outs[i].ToString() " + outs [0].ToString ()); float[] data = new float[7]; for (int i = 0; i < outs[0].rows(); i++) { outs[0].get(i, 0, data); float confidence = data[2]; if (confidence > confThreshold) { int class_id = (int)(data[1]); float left = data[3] * frame.cols(); float top = data[4] * frame.rows(); float right = data[5] * frame.cols(); float bottom = data[6] * frame.rows(); float width = right - left + 1f; float height = bottom - top + 1f; classIdsList.Add((int)(class_id) - 0); confidencesList.Add((float)confidence); boxesList.Add(new Rect2d(left, top, width, height)); } } } } else if (outLayerType == "DetectionOutput") { // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] if (outs.Count == 1) { outs[0] = outs[0].reshape(1, (int)outs[0].total() / 7); //Debug.Log ("outs[i].ToString() " + outs [0].ToString ()); float[] data = new float[7]; for (int i = 0; i < outs[0].rows(); i++) { outs[0].get(i, 0, data); float confidence = data[2]; if (confidence > confThreshold) { int class_id = (int)(data[1]); float left = data[3] * frame.cols(); float top = data[4] * frame.rows(); float right = data[5] * frame.cols(); float bottom = data[6] * frame.rows(); float width = right - left + 1f; float height = bottom - top + 1f; classIdsList.Add((int)(class_id) - 0); confidencesList.Add((float)confidence); boxesList.Add(new Rect2d(left, top, width, height)); } } } } else if (outLayerType == "Region") { for (int i = 0; i < outs.Count; ++i) { // Network produces output blob with a shape NxC where N is a number of // detected objects and C is a number of classes + 4 where the first 4 // numbers are [center_x, center_y, width, height] //Debug.Log ("outs[i].ToString() "+outs[i].ToString()); float[] positionData = new float[5]; float[] confidenceData = new float[outs[i].cols() - 5]; for (int p = 0; p < outs[i].rows(); p++) { outs[i].get(p, 0, positionData); outs[i].get(p, 5, confidenceData); int maxIdx = confidenceData.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I; float confidence = confidenceData[maxIdx]; if (confidence > confThreshold) { float centerX = positionData[0] * frame.cols(); float centerY = positionData[1] * frame.rows(); float width = positionData[2] * frame.cols(); float height = positionData[3] * frame.rows(); float left = centerX - width / 2; float top = centerY - height / 2; classIdsList.Add(maxIdx); confidencesList.Add((float)confidence); boxesList.Add(new Rect2d(left, top, width, height)); } } } } else { Debug.Log("Unknown output layer type: " + outLayerType); } MatOfRect2d boxes = new MatOfRect2d(); boxes.fromList(boxesList); MatOfFloat confidences = new MatOfFloat(); confidences.fromList(confidencesList); MatOfInt indices = new MatOfInt(); Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); //Debug.Log ("indices.dump () "+indices.dump ()); //Debug.Log ("indices.ToString () "+indices.ToString()); for (int i = 0; i < indices.total(); ++i) { int idx = (int)indices.get(i, 0)[0]; Rect2d box = boxesList[idx]; drawPred(classIdsList[idx], confidencesList[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); } indices.Dispose(); boxes.Dispose(); confidences.Dispose(); }
protected override void postprocess(Mat frame, List <Mat> outs, Net net, int backend = Dnn.DNN_BACKEND_OPENCV) { List <int> classIdsList = new List <int>(); List <float> confidencesList = new List <float>(); List <Rect2d> boxesList = new List <Rect2d>(); List <Point[]> pointsList = new List <Point[]>(); if (outs.Count == 2) { // reshape mat : outs[0]:[1, x, 4] to [x, 4], outs[1]:[1, x, 2] to [x, 2] Mat boxes_m = outs[0].reshape(1, new int[] { outs[0].size(1), outs[0].size(2) }); Mat scores_m = outs[1].reshape(1, new int[] { outs[1].size(1), outs[1].size(2) }); //Debug.Log("boxes_m: " + boxes_m); //Debug.Log("scores_m: " + scores_m); //Debug.Log("priors: " + priors); convertLocationsToBoxes(boxes_m, priors, 0.1f, 0.2f); centerFormToCornerForm(boxes_m); Mat boxes_0_4 = new Mat(boxes_m, new Range(0, boxes_m.rows()), new Range(0, 4)); float[] boxes_arr = new float[boxes_0_4.rows() * boxes_0_4.cols()]; MatUtils.copyFromMat(boxes_0_4, boxes_arr); Mat scores_1_2 = new Mat(scores_m, new Range(0, scores_m.rows()), new Range(1, 2)); float[] confidences_arr = new float[scores_1_2.rows()]; MatUtils.copyFromMat(scores_1_2, confidences_arr); for (int i = 0; i < boxes_m.rows(); i++) { float confidence = confidences_arr[i]; if (confidence > confThreshold) { int boxes_index = i * 4; float left = boxes_arr[boxes_index] * frame.cols(); float top = boxes_arr[boxes_index + 1] * frame.rows(); float right = boxes_arr[boxes_index + 2] * frame.cols(); float bottom = boxes_arr[boxes_index + 3] * frame.rows(); float width = right - left + 1f; float height = bottom - top + 1f; classIdsList.Add(0); confidencesList.Add(confidence); boxesList.Add(new Rect2d(left, top, width, height)); } } if (boxes_m.cols() > 4 && boxes_m.cols() % 2 == 0) { Mat points = new Mat(boxes_m, new Range(0, boxes_m.rows()), new Range(4, boxes_m.cols())); float[] points_arr = new float[points.rows() * points.cols()]; MatUtils.copyFromMat(points, points_arr); for (int i = 0; i < boxes_m.rows(); i++) { float confidence = confidences_arr[i]; if (confidence > confThreshold) { int points_index = i * points.cols(); Point[] p_arr = new Point[points.cols() / 2]; for (int index = 0; index < points.cols() / 2; index++) { float x = points_arr[points_index + index * 2] * frame.cols(); float y = points_arr[points_index + index * 2 + 1] * frame.rows(); p_arr[index] = new Point(x, y); } pointsList.Add(p_arr); } } } } MatOfRect2d boxes = new MatOfRect2d(); boxes.fromList(boxesList); MatOfFloat confidences = new MatOfFloat(); confidences.fromList(confidencesList); MatOfInt indices = new MatOfInt(); Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); //Debug.Log("indices.dump () " + indices.dump()); //Debug.Log ("indices.ToString () "+indices.ToString()); for (int i = 0; i < indices.total(); ++i) { int idx = (int)indices.get(i, 0)[0]; Rect2d box = boxesList[idx]; drawPred(classIdsList[idx], confidencesList[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); if (pointsList.Count > 0) { drawPredPoints(pointsList[idx], frame); } } indices.Dispose(); boxes.Dispose(); confidences.Dispose(); }
/// <summary> /// Get result form all output /// </summary> /// <param name="output"></param> /// <param name="image"></param> /// <param name="threshold"></param> /// <param name="nmsThreshold">threshold for nms</param> /// <param name="nms">Enable Non-maximum suppression or not</param> private static void GetResult(IEnumerable <Mat> output, Mat image, float threshold, float nmsThreshold, bool nms = true) { //for nms List <int> classIds = new List <int>(); List <float> confidences = new List <float>(); List <float> probabilities = new List <float>(); List <Rect2d> boxes = new List <Rect2d>(); var w = image.width(); var h = image.height(); /* * YOLO3 COCO trainval output * 0 1 : center 2 3 : w/h * 4 : confidence 5 ~ 84 : class probability */ const int prefix = 5; //skip 0~4 foreach (Mat prob in output) { for (int i = 0; i < prob.rows(); i++) { var confidence = (float)prob.get(i, 4)[0]; if (confidence > threshold) { //get classes probability Core.MinMaxLocResult minAndMax = Core.minMaxLoc(prob.row(i).colRange(prefix, prob.cols())); int classes = (int)minAndMax.maxLoc.x; var probability = (float)prob.get(i, classes + prefix)[0]; if (probability > threshold) //more accuracy, you can cancel it { //get center and width/height float centerX = (float)prob.get(i, 0)[0] * w; float centerY = (float)prob.get(i, 1)[0] * h; float width = (float)prob.get(i, 2)[0] * w; float height = (float)prob.get(i, 3)[0] * h; if (!nms) { // draw result (if don't use NMSBoxes) Draw(image, classes, confidence, probability, centerX, centerY, width, height); continue; } //put data to list for NMSBoxes classIds.Add(classes); confidences.Add(confidence); probabilities.Add(probability); boxes.Add(new Rect2d(centerX, centerY, width, height)); } } } } if (!nms) { return; } //using non-maximum suppression to reduce overlapping low confidence box MatOfRect2d bboxes = new MatOfRect2d(); MatOfFloat scores = new MatOfFloat(); MatOfInt indices = new MatOfInt(); bboxes.fromList(boxes); scores.fromList(probabilities); Dnn.NMSBoxes(bboxes, scores, threshold, nmsThreshold, indices); int[] indicesA = indices.toArray(); foreach (var i in indicesA) { var box = boxes[i]; Draw(image, classIds[i], confidences[i], probabilities[i], box.x, box.y, box.width, box.height); } }