/// <summary>
        /// Postprocess the specified frame, outs and net.
        /// </summary>
        /// <param name="frame">Frame.</param>
        /// <param name="outs">Outs.</param>
        /// <param name="net">Net.</param>
        protected virtual void postprocess(Mat frame, List <Mat> outs, Net net)
        {
            string outLayerType = outBlobTypes[0];


            List <int>    classIdsList    = new List <int>();
            List <float>  confidencesList = new List <float>();
            List <Rect2d> boxesList       = new List <Rect2d>();

            if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1)
            {
                // Faster-RCNN or R-FCN
                // Network produces output blob with a shape 1x1xNx7 where N is a number of
                // detections and an every detection is a vector of values
                // [batchId, classId, confidence, left, top, right, bottom]

                if (outs.Count == 1)
                {
                    outs[0] = outs[0].reshape(1, (int)outs[0].total() / 7);

                    //Debug.Log ("outs[i].ToString() " + outs [0].ToString ());

                    float[] data = new float[7];

                    for (int i = 0; i < outs[0].rows(); i++)
                    {
                        outs[0].get(i, 0, data);

                        float confidence = data[2];

                        if (confidence > confThreshold)
                        {
                            int class_id = (int)(data[1]);

                            float left   = data[3] * frame.cols();
                            float top    = data[4] * frame.rows();
                            float right  = data[5] * frame.cols();
                            float bottom = data[6] * frame.rows();
                            float width  = right - left + 1f;
                            float height = bottom - top + 1f;

                            classIdsList.Add((int)(class_id) - 0);
                            confidencesList.Add((float)confidence);
                            boxesList.Add(new Rect2d(left, top, width, height));
                        }
                    }
                }
            }
            else if (outLayerType == "DetectionOutput")
            {
                // Network produces output blob with a shape 1x1xNx7 where N is a number of
                // detections and an every detection is a vector of values
                // [batchId, classId, confidence, left, top, right, bottom]

                if (outs.Count == 1)
                {
                    outs[0] = outs[0].reshape(1, (int)outs[0].total() / 7);

                    //Debug.Log ("outs[i].ToString() " + outs [0].ToString ());

                    float[] data = new float[7];

                    for (int i = 0; i < outs[0].rows(); i++)
                    {
                        outs[0].get(i, 0, data);

                        float confidence = data[2];

                        if (confidence > confThreshold)
                        {
                            int class_id = (int)(data[1]);

                            float left   = data[3] * frame.cols();
                            float top    = data[4] * frame.rows();
                            float right  = data[5] * frame.cols();
                            float bottom = data[6] * frame.rows();
                            float width  = right - left + 1f;
                            float height = bottom - top + 1f;

                            classIdsList.Add((int)(class_id) - 0);
                            confidencesList.Add((float)confidence);
                            boxesList.Add(new Rect2d(left, top, width, height));
                        }
                    }
                }
            }
            else if (outLayerType == "Region")
            {
                for (int i = 0; i < outs.Count; ++i)
                {
                    // Network produces output blob with a shape NxC where N is a number of
                    // detected objects and C is a number of classes + 4 where the first 4
                    // numbers are [center_x, center_y, width, height]

                    //Debug.Log ("outs[i].ToString() "+outs[i].ToString());

                    float[] positionData   = new float[5];
                    float[] confidenceData = new float[outs[i].cols() - 5];

                    for (int p = 0; p < outs[i].rows(); p++)
                    {
                        outs[i].get(p, 0, positionData);

                        outs[i].get(p, 5, confidenceData);

                        int   maxIdx     = confidenceData.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I;
                        float confidence = confidenceData[maxIdx];

                        if (confidence > confThreshold)
                        {
                            float centerX = positionData[0] * frame.cols();
                            float centerY = positionData[1] * frame.rows();
                            float width   = positionData[2] * frame.cols();
                            float height  = positionData[3] * frame.rows();
                            float left    = centerX - width / 2;
                            float top     = centerY - height / 2;

                            classIdsList.Add(maxIdx);
                            confidencesList.Add((float)confidence);
                            boxesList.Add(new Rect2d(left, top, width, height));
                        }
                    }
                }
            }
            else
            {
                Debug.Log("Unknown output layer type: " + outLayerType);
            }


            MatOfRect2d boxes = new MatOfRect2d();

            boxes.fromList(boxesList);

            MatOfFloat confidences = new MatOfFloat();

            confidences.fromList(confidencesList);


            MatOfInt indices = new MatOfInt();

            Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);

            //Debug.Log ("indices.dump () "+indices.dump ());
            //Debug.Log ("indices.ToString () "+indices.ToString());

            for (int i = 0; i < indices.total(); ++i)
            {
                int    idx = (int)indices.get(i, 0)[0];
                Rect2d box = boxesList[idx];
                drawPred(classIdsList[idx], confidencesList[idx], box.x, box.y,
                         box.x + box.width, box.y + box.height, frame);
            }

            indices.Dispose();
            boxes.Dispose();
            confidences.Dispose();
        }
        protected override void postprocess(Mat frame, List <Mat> outs, Net net, int backend = Dnn.DNN_BACKEND_OPENCV)
        {
            List <int>     classIdsList    = new List <int>();
            List <float>   confidencesList = new List <float>();
            List <Rect2d>  boxesList       = new List <Rect2d>();
            List <Point[]> pointsList      = new List <Point[]>();

            if (outs.Count == 2)
            {
                // reshape mat : outs[0]:[1, x, 4] to [x, 4], outs[1]:[1, x, 2] to [x, 2]
                Mat boxes_m  = outs[0].reshape(1, new int[] { outs[0].size(1), outs[0].size(2) });
                Mat scores_m = outs[1].reshape(1, new int[] { outs[1].size(1), outs[1].size(2) });

                //Debug.Log("boxes_m: " + boxes_m);
                //Debug.Log("scores_m: " + scores_m);
                //Debug.Log("priors: " + priors);

                convertLocationsToBoxes(boxes_m, priors, 0.1f, 0.2f);
                centerFormToCornerForm(boxes_m);

                Mat     boxes_0_4 = new Mat(boxes_m, new Range(0, boxes_m.rows()), new Range(0, 4));
                float[] boxes_arr = new float[boxes_0_4.rows() * boxes_0_4.cols()];
                MatUtils.copyFromMat(boxes_0_4, boxes_arr);

                Mat     scores_1_2      = new Mat(scores_m, new Range(0, scores_m.rows()), new Range(1, 2));
                float[] confidences_arr = new float[scores_1_2.rows()];
                MatUtils.copyFromMat(scores_1_2, confidences_arr);

                for (int i = 0; i < boxes_m.rows(); i++)
                {
                    float confidence = confidences_arr[i];

                    if (confidence > confThreshold)
                    {
                        int boxes_index = i * 4;

                        float left   = boxes_arr[boxes_index] * frame.cols();
                        float top    = boxes_arr[boxes_index + 1] * frame.rows();
                        float right  = boxes_arr[boxes_index + 2] * frame.cols();
                        float bottom = boxes_arr[boxes_index + 3] * frame.rows();
                        float width  = right - left + 1f;
                        float height = bottom - top + 1f;

                        classIdsList.Add(0);
                        confidencesList.Add(confidence);
                        boxesList.Add(new Rect2d(left, top, width, height));
                    }
                }

                if (boxes_m.cols() > 4 && boxes_m.cols() % 2 == 0)
                {
                    Mat     points     = new Mat(boxes_m, new Range(0, boxes_m.rows()), new Range(4, boxes_m.cols()));
                    float[] points_arr = new float[points.rows() * points.cols()];
                    MatUtils.copyFromMat(points, points_arr);

                    for (int i = 0; i < boxes_m.rows(); i++)
                    {
                        float confidence = confidences_arr[i];

                        if (confidence > confThreshold)
                        {
                            int points_index = i * points.cols();

                            Point[] p_arr = new Point[points.cols() / 2];
                            for (int index = 0; index < points.cols() / 2; index++)
                            {
                                float x = points_arr[points_index + index * 2] * frame.cols();
                                float y = points_arr[points_index + index * 2 + 1] * frame.rows();
                                p_arr[index] = new Point(x, y);
                            }
                            pointsList.Add(p_arr);
                        }
                    }
                }
            }

            MatOfRect2d boxes = new MatOfRect2d();

            boxes.fromList(boxesList);

            MatOfFloat confidences = new MatOfFloat();

            confidences.fromList(confidencesList);

            MatOfInt indices = new MatOfInt();

            Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices);

            //Debug.Log("indices.dump () " + indices.dump());
            //Debug.Log ("indices.ToString () "+indices.ToString());

            for (int i = 0; i < indices.total(); ++i)
            {
                int    idx = (int)indices.get(i, 0)[0];
                Rect2d box = boxesList[idx];
                drawPred(classIdsList[idx], confidencesList[idx], box.x, box.y,
                         box.x + box.width, box.y + box.height, frame);

                if (pointsList.Count > 0)
                {
                    drawPredPoints(pointsList[idx], frame);
                }
            }

            indices.Dispose();
            boxes.Dispose();
            confidences.Dispose();
        }
Example #3
0
        /// <summary>
        /// Get result form all output
        /// </summary>
        /// <param name="output"></param>
        /// <param name="image"></param>
        /// <param name="threshold"></param>
        /// <param name="nmsThreshold">threshold for nms</param>
        /// <param name="nms">Enable Non-maximum suppression or not</param>
        private static void GetResult(IEnumerable <Mat> output, Mat image, float threshold, float nmsThreshold, bool nms = true)
        {
            //for nms
            List <int>    classIds      = new List <int>();
            List <float>  confidences   = new List <float>();
            List <float>  probabilities = new List <float>();
            List <Rect2d> boxes         = new List <Rect2d>();

            var w = image.width();
            var h = image.height();

            /*
             * YOLO3 COCO trainval output
             * 0 1 : center                    2 3 : w/h
             * 4 : confidence                  5 ~ 84 : class probability
             */
            const int prefix = 5;   //skip 0~4

            foreach (Mat prob in output)
            {
                for (int i = 0; i < prob.rows(); i++)
                {
                    var confidence = (float)prob.get(i, 4)[0];
                    if (confidence > threshold)
                    {
                        //get classes probability
                        Core.MinMaxLocResult minAndMax = Core.minMaxLoc(prob.row(i).colRange(prefix, prob.cols()));
                        int classes     = (int)minAndMax.maxLoc.x;
                        var probability = (float)prob.get(i, classes + prefix)[0];

                        if (probability > threshold) //more accuracy, you can cancel it
                        {
                            //get center and width/height
                            float centerX = (float)prob.get(i, 0)[0] * w;
                            float centerY = (float)prob.get(i, 1)[0] * h;
                            float width   = (float)prob.get(i, 2)[0] * w;
                            float height  = (float)prob.get(i, 3)[0] * h;

                            if (!nms)
                            {
                                // draw result (if don't use NMSBoxes)
                                Draw(image, classes, confidence, probability, centerX, centerY, width, height);
                                continue;
                            }

                            //put data to list for NMSBoxes
                            classIds.Add(classes);
                            confidences.Add(confidence);
                            probabilities.Add(probability);
                            boxes.Add(new Rect2d(centerX, centerY, width, height));
                        }
                    }
                }
            }

            if (!nms)
            {
                return;
            }

            //using non-maximum suppression to reduce overlapping low confidence box
            MatOfRect2d bboxes  = new MatOfRect2d();
            MatOfFloat  scores  = new MatOfFloat();
            MatOfInt    indices = new MatOfInt();

            bboxes.fromList(boxes);
            scores.fromList(probabilities);


            Dnn.NMSBoxes(bboxes, scores, threshold, nmsThreshold, indices);

            int[] indicesA = indices.toArray();

            foreach (var i in indicesA)
            {
                var box = boxes[i];
                Draw(image, classIds[i], confidences[i], probabilities[i], box.x, box.y, box.width, box.height);
            }
        }