protected void SetupNetworkTraining() { NetworkSetuped = false; var training = DataTrainingSet.Buffer.Text.Trim(); if (string.IsNullOrEmpty(training)) { return; } NetworkSetuped = SetupInputData(training); // Reset Network Network.Free(); Options.Alpha = Convert.ToDouble(LearningRate.Value, ci) * 1.0e-2; Options.Epochs = Convert.ToInt32(Epochs.Value, ci); Options.Inputs = Convert.ToInt32(InputLayerNodes.Value, ci); Options.Categories = Convert.ToInt32(Categories.Value, ci); Options.Items = InputData.y; Options.Nodes = Convert.ToInt32(HiddenLayerNodes.Value, ci); Options.Tolerance = Convert.ToDouble(Tolerance.Value, ci) * 1.0e-5; if (UseOptimizer.Active) { Network.SetupOptimizer(InputData, OutputData, Options); } else { Network.Setup(OutputData, Options); } DataTrainingSet.Buffer.Text = training; }
protected void SetupNetworkTraining() { NetworkSetuped = false; var training = DataTrainingSet.Buffer.Text.Trim(); if (string.IsNullOrEmpty(training)) { return; } NetworkSetuped = SetupInputData(training); // Reset Network Network.Free(); Options.Alpha = Convert.ToDouble(LearningRate.Value, ci) / 100; Options.Epochs = Convert.ToInt32(Epochs.Value, ci); Options.Inputs = Convert.ToInt32(InputLayerNodes.Value, ci); Options.Categories = Convert.ToInt32(Categories.Value, ci); Options.Items = InputData.y; Options.Nodes = Convert.ToInt32(HiddenLayerNodes.Value, ci); Options.Tolerance = Convert.ToDouble(Tolerance.Value, ci) / 100000; if (NormalizationData != null && NormalizationData.y > 1) { Network.Min = new double[NormalizationData.x]; Network.Max = new double[NormalizationData.x]; for (var i = 0; i < 2; i++) { Network.Min[i] = NormalizationData[i, 0]; Network.Max[i] = NormalizationData[i, 1]; } } if (UseOptimizer.Active) { Network.SetupOptimizer(InputData, OutputData, Options, true); } else { Network.Setup(OutputData, Options, true); } DataTrainingSet.Buffer.Text = training; }