Example #1
0
        //Do not use in parallel as the gappedItems sorting will screw up
        public List <ScoredSequence> DetailedDenovoSequencing(PatternTools.MSParser.MSFull theMS)
        {
            MSFull myMS = PatternTools.ObjectCopier.Clone(theMS);

            PrepareMSForDeNovo(myMS);


            List <GraphNode> allNodes = GetNodes(myMS);

            List <List <GraphNode> > allPaths = new List <List <GraphNode> >();

            foreach (GraphNode g in allNodes)
            {
                //foreach (List<GraphNode> dp in g.DownPaths) {
                //    dp.Insert(0, g);
                //}
                allPaths.AddRange(g.DownPaths);
            }

            allPaths = allPaths.Distinct().ToList();
            allPaths.Sort((a, b) => EvaluatePathForIntensity(b).CompareTo(EvaluatePathForIntensity(a)));


            List <ScoredSequence> theResults = new List <ScoredSequence>();

            foreach (List <GraphNode> p in allPaths)
            {
                double avgPPM          = EvaluatePathForPPMError(p);
                double intensity       = EvaluatePathForIntensity(p);
                int    sequentialScore = p.Count;
                string sequence        = GetSequence(p);

                ScoredSequence s = new ScoredSequence();
                s.AvgPPMError     = Math.Round(avgPPM, 1);
                s.Sequence        = sequence;
                s.TotalIntensity  = Math.Round(intensity, 0);
                s.SequentialScore = sequentialScore;
                theResults.Add(s);
            }

            int removed = theResults.RemoveAll(a => a.Sequence.Equals(""));

            Console.WriteLine("Removing bad results: " + removed);


            Dictionary <string, List <ScoredSequence> > cluster = (from result in theResults
                                                                   group result by result.Sequence into resultGroup
                                                                   select new { theRegex = resultGroup.Key, results = resultGroup }).ToDictionary(a => a.theRegex, a => a.results.ToList());

            theResults.Clear();

            foreach (KeyValuePair <string, List <ScoredSequence> > kvp in cluster)
            {
                kvp.Value.Sort((a, b) => b.TotalIntensity.CompareTo(a.TotalIntensity));
                theResults.Add(kvp.Value[0]);
            }

            return(theResults);
        }
Example #2
0
        public static SpectrumComparisonResult Do(List <TheTests> theTests, List <PredictedIon> theoretical, List <Ion> experimentalPeaks, double ppm, int cleanedPeptideSequenceLength, double relativeIntensityThreshold)
        {
            PatternTools.MSParser.MSFull ms = new MSFull();
            ms.MSData            = experimentalPeaks;
            ms.TotalIonIntensity = experimentalPeaks.Sum(a => a.Intensity);

            return(Do(theTests, theoretical, ms, ppm, cleanedPeptideSequenceLength, relativeIntensityThreshold));
        }
        public void PlotSpectrum(MSParserLight.MSLight mslight, double ppm, string peptideSequence, List <ModificationItem> myMods, bool etdMode)
        {
            MSFull msFull = new MSFull();

            for (int i = 0; i < mslight.MZ.Count; i++)
            {
                msFull.MSData.Add(new Ion(mslight.MZ[i], mslight.Intensity[i], 0, mslight.ScanNumber));
            }

            PlotSpectrum(msFull, ppm, peptideSequence, myMods, etdMode);
        }
Example #4
0
        private void PrepareMSForDeNovo(MSFull myMS)
        {
            double maxIntensity = myMS.MSData.Max(b => b.Intensity);

            myMS.MSData.RemoveAll(a => a.Intensity < intensityPercentageCuttoff * maxIntensity);
            myMS.MSData.Sort((a, b) => a.MZ.CompareTo(b.MZ));

            myMS.MSData.Insert(0, new Ion(1.007825, maxIntensity, 0, 0));

            foreach (double d in myMS.DechargedPrecursorsFromZLine)
            {
                myMS.MSData.Add(new Ion(d, 1, 0, 0));
            }
        }
        public void PlotSpectrum(MSFull ms, double ppm, string peptideSequence, List <ModificationItem> myMods, bool etdMode)
        {
            msViewer1.MyMS            = ms;
            msViewer1.SetMS2PPM       = ppm;
            msViewer1.PeptideSequence = peptideSequence;

            msViewer1.Modifications = myMods;


            if (etdMode)
            {
                msViewer1.SetToCIDMode();
            }
            else
            {
                msViewer1.SetToETDMode();
            }
            msViewer1.SetToCIDMode();
            msViewer1.Plot();
        }
Example #6
0
        //Optimized for finding most intense sequence
        public double FastMaxSequentialScoreCoverage(PatternTools.MSParser.MSFull theMS)
        {
            MSFull myMS = PatternTools.ObjectCopier.Clone(theMS);

            PrepareMSForDeNovo(myMS);


            List <GraphNode> allNodes = GetNodes(myMS);

            List <List <GraphNode> > allPaths = new List <List <GraphNode> >();

            foreach (GraphNode g in allNodes)
            {
                allPaths.AddRange(g.DownPaths);
            }

            allPaths = allPaths.Distinct().ToList();
            allPaths.Sort((a, b) => EvaluatePathForIntensity(b).CompareTo(EvaluatePathForIntensity(a)));

            double coverage = allPaths[0].Max(a => a.MZ) - allPaths[0].Min(a => a.MZ);

            return(coverage);
        }
Example #7
0
        private List <GraphNode> GetNodes(MSFull myMS)
        {
            List <GraphNode> allNodes = new List <GraphNode>(myMS.MSData.Count);

            //Create the Node Array
            for (int i = 0; i < myMS.MSData.Count; i++)
            {
                allNodes.Add(new GraphNode(Math.Round(myMS.MSData[i].MZ, 3), myMS.MSData[i].Intensity, i));;
            }


            //Include the Child Links
            for (int i = 0; i < allNodes.Count; i++)
            {
                for (int j = i; j < allNodes.Count; j++)
                {
                    if (j == i)
                    {
                        continue;
                    }
                    double delta = allNodes[j].MZ - allNodes[i].MZ;

                    if (delta > largestGap)
                    {
                        break;
                    }

                    double thisStep = allNodes[i].MZ + delta;
                    //List<GapItem> gp = (from g in gapItems
                    //                    orderby (PatternTools.pTools.PPM(thisStep, allNodes[i].MZ + g.GapSize))
                    //                    select g).ToList();


                    foreach (GapItem gp in gapItems)
                    {
                        double ppm2;
                        if ((ppm2 = PatternTools.pTools.PPM(allNodes[i].MZ + delta, allNodes[i].MZ + gp.GapSize)) < ppmTolerance)
                        {
                            GraphNode.GraphNodeLink gl = new GraphNode.GraphNodeLink(j, ppm2, gp, allNodes[j].Intensity);
                            allNodes[i].ChildLinks.Add(gl);
                        }
                    }
                }
            }

            //Now lets sort all childlinks by error cost
            foreach (GraphNode g in allNodes)
            {
                //g.ChildLinks.Sort((a, b) => b.Intensity.CompareTo(a.Intensity));
                g.ChildLinks.Sort((a, b) => a.ErrorCostPPM.CompareTo(b.ErrorCostPPM));
                g.DownPaths = new List <List <GraphNode> >();
                g.DownPaths.Add(new List <GraphNode>());
            }

            List <double> bestIntensities = new List <double>(resultBuffer);

            bestIntensities.Add(0);

            for (int i = allNodes.Count - 1; i >= 0; i--)
            {
                GraphNode rNode = allNodes[i];

                if (rNode.ChildLinks.Count == 0)
                {
                    continue;
                }

                foreach (GraphNode.GraphNodeLink gnl in rNode.ChildLinks)
                {
                    List <List <GraphNode> > pathsToTrim = new List <List <GraphNode> >();

                    foreach (List <GraphNode> path in allNodes[gnl.TheNode].DownPaths)
                    {
                        List <GraphNode> newPath = new List <GraphNode>()
                        {
                            allNodes[gnl.TheNode]
                        };
                        newPath.AddRange(path);

                        double downIntensity = EvaluatePathForIntensity(newPath);

                        double bestIntensitiesMin = bestIntensities.Min();
                        if (downIntensity > bestIntensitiesMin)
                        {
                            bestIntensities.Add(downIntensity);

                            rNode.DownPaths.Add(newPath);

                            if (bestIntensities.Count > resultBuffer)
                            {
                                bestIntensities.Remove(bestIntensitiesMin);
                            }
                        }
                        else
                        {
                            pathsToTrim.Add(path);
                        }
                    }

                    if (pathsToTrim.Count > 0)
                    {
                        //allNodes[gnl.TheNode].DownPaths = allNodes[gnl.TheNode].DownPaths.Except(pathsToTrim).ToList();
                    }
                }
            }


            foreach (GraphNode g in allNodes)
            {
                foreach (List <GraphNode> l in g.DownPaths)
                {
                    l.Insert(0, g);
                }

                //I dont understand why this does not work
                //g.DownPaths.ForEach(a => a.Insert(0, g.MyIndex));
            }

            return(allNodes);
        }
Example #8
0
        public static SpectrumComparisonResult Do(List <TheTests> theTests, List <PredictedIon> theoretical, MSFull experimentalTmp, double ppm, int cleanedPeptideSequenceLength, double relativeIntensityThreshold)
        {
            SpectrumComparisonResult scr = new SpectrumComparisonResult();

            //Make sure we dont screw up the original spectrum
            MSFull experimental = PatternTools.ObjectCopier.Clone(experimentalTmp);

            double maxIntensity = experimental.MSData.Max(a => a.Intensity);

            experimental.MSData.RemoveAll(a => a.Intensity / maxIntensity < relativeIntensityThreshold);

            bool allTests = false;

            if (theTests.Contains(TheTests.AllTests))
            {
                allTests = true;
            }

            //Just to make sure
            foreach (PredictedIon p in theoretical)
            {
                p.Matched = false;
            }

            //Before all find all matched theoretical and experimental
            List <Ion> matchedIons = new List <Ion>(100);

            foreach (PredictedIon pi in theoretical)
            {
                List <Ion> theIons = experimental.MSData.FindAll(a => PatternTools.pTools.PPM(a.MZ, pi.MZ) < ppm);

                if (theIons.Count > 0)
                {
                    matchedIons.AddRange(theIons);
                    pi.Matched = true;
                }
            }

            matchedIons = matchedIons.Distinct().ToList();

            if (theTests.Contains(TheTests.SignalPercentage) || allTests)
            {
                scr.SignalPercentage = Math.Round(matchedIons.Sum(a => a.Intensity) / experimental.TotalIonIntensity, 6);
            }

            if (theTests.Contains(TheTests.ACount) || allTests)
            {
                scr.ACount = SequentialScore(theoretical, IonSeries.A);
            }
            if (theTests.Contains(TheTests.BCount) || allTests)
            {
                scr.BCount = SequentialScore(theoretical, IonSeries.B);
            }
            if (theTests.Contains(TheTests.CCount) || allTests)
            {
                scr.CCount = SequentialScore(theoretical, IonSeries.C);
            }
            if (theTests.Contains(TheTests.XCount) || allTests)
            {
                scr.XCount = SequentialScore(theoretical, IonSeries.X);
            }
            if (theTests.Contains(TheTests.YCount) || allTests)
            {
                scr.YCount = SequentialScore(theoretical, IonSeries.Y);
            }
            if (theTests.Contains(TheTests.ZCount) || allTests)
            {
                scr.ZCount = SequentialScore(theoretical, IonSeries.Z);
            }


            if (theTests.Contains(TheTests.ComplementaryPairsAX) || allTests)
            {
                scr.ComplementaryPairsAX = CountComplementaryPairs(scr.ACount, scr.XCount, cleanedPeptideSequenceLength);
            }
            if (theTests.Contains(TheTests.ComplementaryPairsBY) || allTests)
            {
                scr.ComplementaryPairsBY = CountComplementaryPairs(scr.BCount, scr.YCount, cleanedPeptideSequenceLength);
            }
            if (theTests.Contains(TheTests.ComplementaryPairsCZ) || allTests)
            {
                scr.ComplementaryPairsCZ = CountComplementaryPairs(scr.CCount, scr.ZCount, cleanedPeptideSequenceLength);
            }

            return(scr);
        }