/// <summary> /// Computes the Multiple Linear Regression Analysis. /// </summary> /// public bool Compute() { double delta; int iteration = 0; var learning = new LowerBoundNewtonRaphson(regression); do // learning iterations until convergence { delta = learning.Run(inputData, outputData); iteration++; } while (delta > tolerance && iteration < iterations); // Check if the full model has converged bool converged = iteration < iterations; computeInformation(); return(converged); }
private MultinomialLogisticRegression buildModel() { if (independent == null) { formatData(); } mlr = new MultinomialLogisticRegression(nvars, ncat); LowerBoundNewtonRaphson lbn = new LowerBoundNewtonRaphson(mlr); do { delta = lbn.Run(independent, dependent); iteration++; } while (iteration < totit && delta > converg); coefficients = mlr.Coefficients; standarderror = new double[ncat - 1][]; waldstat = new double[ncat - 1][]; waldpvalue = new double[ncat - 1][]; for (int i = 0; i < coefficients.Length; i++) { double[] steArr = new double[nvars + 1]; double[] waldStatArr = new double[nvars + 1]; double[] waldPvalueArr = new double[nvars + 1]; for (int j = 0; j < nvars + 1; j++) { Accord.Statistics.Testing.WaldTest wt = mlr.GetWaldTest(i, j); steArr[j] = wt.StandardError; waldStatArr[j] = wt.Statistic; waldPvalueArr[j] = wt.PValue; } waldstat[i] = waldStatArr; waldpvalue[i] = waldPvalueArr; standarderror[i] = steArr; } loglikelihood = mlr.GetLogLikelihood(independent, dependent); deviance = mlr.GetDeviance(independent, dependent); x2 = mlr.ChiSquare(independent, dependent).Statistic; pv = mlr.ChiSquare(independent, dependent).PValue; return(mlr); }
public void RegressTest2() { double[][] inputs; int[] outputs; CreateInputOutputsExample1(out inputs, out outputs); // Create a new Multinomial Logistic Regression for 3 categories var mlr = new MultinomialLogisticRegression(inputs: 2, categories: 3); // Create a estimation algorithm to estimate the regression LowerBoundNewtonRaphson lbnr = new LowerBoundNewtonRaphson(mlr); // Now, we will iteratively estimate our model. The Run method returns // the maximum relative change in the model parameters and we will use // it as the convergence criteria. double delta; int iteration = 0; do { // Perform an iteration delta = lbnr.Run(inputs, outputs); iteration++; } while (iteration < 100 && delta > 1e-6); Assert.AreEqual(52, iteration); Assert.IsFalse(double.IsNaN(mlr.Coefficients[0][0])); Assert.IsFalse(double.IsNaN(mlr.Coefficients[0][1])); Assert.IsFalse(double.IsNaN(mlr.Coefficients[0][2])); Assert.IsFalse(double.IsNaN(mlr.Coefficients[1][0])); Assert.IsFalse(double.IsNaN(mlr.Coefficients[1][1])); Assert.IsFalse(double.IsNaN(mlr.Coefficients[1][2])); // This is the same example given in R Data Analysis Examples for // Multinomial Logistic Regression: http://www.ats.ucla.edu/stat/r/dae/mlogit.htm // brand 2 Assert.AreEqual(-11.774655, mlr.Coefficients[0][0], 1e-4); // intercept Assert.AreEqual(0.523814, mlr.Coefficients[0][1], 1e-4); // female Assert.AreEqual(0.368206, mlr.Coefficients[0][2], 1e-4); // age // brand 3 Assert.AreEqual(-22.721396, mlr.Coefficients[1][0], 1e-4); // intercept Assert.AreEqual(0.465941, mlr.Coefficients[1][1], 1e-4); // female Assert.AreEqual(0.685908, mlr.Coefficients[1][2], 1e-4); // age Assert.IsFalse(double.IsNaN(mlr.StandardErrors[0][0])); Assert.IsFalse(double.IsNaN(mlr.StandardErrors[0][1])); Assert.IsFalse(double.IsNaN(mlr.StandardErrors[0][2])); Assert.IsFalse(double.IsNaN(mlr.StandardErrors[1][0])); Assert.IsFalse(double.IsNaN(mlr.StandardErrors[1][1])); Assert.IsFalse(double.IsNaN(mlr.StandardErrors[1][2])); /* * // Using the standard Hessian estimation * Assert.AreEqual(1.774612, mlr.StandardErrors[0][0], 1e-6); * Assert.AreEqual(0.194247, mlr.StandardErrors[0][1], 1e-6); * Assert.AreEqual(0.055003, mlr.StandardErrors[0][2], 1e-6); * * Assert.AreEqual(2.058028, mlr.StandardErrors[1][0], 1e-6); * Assert.AreEqual(0.226090, mlr.StandardErrors[1][1], 1e-6); * Assert.AreEqual(0.062627, mlr.StandardErrors[1][2], 1e-6); */ // Using the lower-bound approximation Assert.AreEqual(1.047378039787443, mlr.StandardErrors[0][0], 1e-6); Assert.AreEqual(0.153150051082552, mlr.StandardErrors[0][1], 1e-6); Assert.AreEqual(0.031640507386863, mlr.StandardErrors[0][2], 1e-6); Assert.AreEqual(1.047378039787443, mlr.StandardErrors[1][0], 1e-6); Assert.AreEqual(0.153150051082552, mlr.StandardErrors[1][1], 1e-6); Assert.AreEqual(0.031640507386863, mlr.StandardErrors[1][2], 1e-6); double ll = mlr.GetLogLikelihood(inputs, outputs); Assert.AreEqual(-702.97, ll, 1e-2); Assert.IsFalse(double.IsNaN(ll)); var chi = mlr.ChiSquare(inputs, outputs); Assert.AreEqual(185.85, chi.Statistic, 1e-2); Assert.IsFalse(double.IsNaN(chi.Statistic)); var wald00 = mlr.GetWaldTest(0, 0); var wald01 = mlr.GetWaldTest(0, 1); var wald02 = mlr.GetWaldTest(0, 2); var wald10 = mlr.GetWaldTest(1, 0); var wald11 = mlr.GetWaldTest(1, 1); var wald12 = mlr.GetWaldTest(1, 2); Assert.IsFalse(double.IsNaN(wald00.Statistic)); Assert.IsFalse(double.IsNaN(wald01.Statistic)); Assert.IsFalse(double.IsNaN(wald02.Statistic)); Assert.IsFalse(double.IsNaN(wald10.Statistic)); Assert.IsFalse(double.IsNaN(wald11.Statistic)); Assert.IsFalse(double.IsNaN(wald12.Statistic)); /* * // Using standard Hessian estimation * Assert.AreEqual(-6.6351, wald00.Statistic, 1e-4); * Assert.AreEqual( 2.6966, wald01.Statistic, 1e-4); * Assert.AreEqual( 6.6943, wald02.Statistic, 1e-4); * * Assert.AreEqual(-11.0404, wald10.Statistic, 1e-4); * Assert.AreEqual( 2.0609, wald11.Statistic, 1e-4); * Assert.AreEqual(10.9524, wald12.Statistic, 1e-4); */ // Using Lower-Bound approximation Assert.AreEqual(-11.241995503283842, wald00.Statistic, 1e-4); Assert.AreEqual(3.4202662152119889, wald01.Statistic, 1e-4); Assert.AreEqual(11.637150673342207, wald02.Statistic, 1e-4); Assert.AreEqual(-21.693553825772664, wald10.Statistic, 1e-4); Assert.AreEqual(3.0423802097069097, wald11.Statistic, 1e-4); Assert.AreEqual(21.678124991086548, wald12.Statistic, 1e-4); }