private static void WorkerThreadStart()
            {
                Thread.CurrentThread.SetThreadPoolWorkerThreadName();

                PortableThreadPool threadPoolInstance = ThreadPoolInstance;

                if (PortableThreadPoolEventSource.Log.IsEnabled())
                {
                    PortableThreadPoolEventSource.Log.ThreadPoolWorkerThreadStart(
                        (uint)threadPoolInstance._separated.counts.VolatileRead().NumExistingThreads);
                }

                LowLevelLock          hillClimbingThreadAdjustmentLock = threadPoolInstance._hillClimbingThreadAdjustmentLock;
                LowLevelLifoSemaphore semaphore = s_semaphore;

                while (true)
                {
                    bool spinWait = true;
                    while (semaphore.Wait(ThreadPoolThreadTimeoutMs, spinWait))
                    {
                        bool alreadyRemovedWorkingWorker = false;
                        while (TakeActiveRequest(threadPoolInstance))
                        {
                            Volatile.Write(ref threadPoolInstance._separated.lastDequeueTime, Environment.TickCount);
                            if (!ThreadPoolWorkQueue.Dispatch())
                            {
                                // ShouldStopProcessingWorkNow() caused the thread to stop processing work, and it would have
                                // already removed this working worker in the counts. This typically happens when hill climbing
                                // decreases the worker thread count goal.
                                alreadyRemovedWorkingWorker = true;
                                break;
                            }
                        }

                        // Don't spin-wait on the semaphore next time if the thread was actively stopped from processing work,
                        // as it's unlikely that the worker thread count goal would be increased again so soon afterwards that
                        // the semaphore would be released within the spin-wait window
                        spinWait = !alreadyRemovedWorkingWorker;

                        if (!alreadyRemovedWorkingWorker)
                        {
                            // If we woke up but couldn't find a request, or ran out of work items to process, we need to update
                            // the number of working workers to reflect that we are done working for now
                            RemoveWorkingWorker(threadPoolInstance);
                        }
                    }

                    hillClimbingThreadAdjustmentLock.Acquire();
                    try
                    {
                        // At this point, the thread's wait timed out. We are shutting down this thread.
                        // We are going to decrement the number of exisiting threads to no longer include this one
                        // and then change the max number of threads in the thread pool to reflect that we don't need as many
                        // as we had. Finally, we are going to tell hill climbing that we changed the max number of threads.
                        ThreadCounts counts = threadPoolInstance._separated.counts.VolatileRead();
                        while (true)
                        {
                            // Since this thread is currently registered as an existing thread, if more work comes in meanwhile,
                            // this thread would be expected to satisfy the new work. Ensure that NumExistingThreads is not
                            // decreased below NumProcessingWork, as that would be indicative of such a case.
                            short numExistingThreads = counts.NumExistingThreads;
                            if (numExistingThreads <= counts.NumProcessingWork)
                            {
                                // In this case, enough work came in that this thread should not time out and should go back to work.
                                break;
                            }

                            ThreadCounts newCounts = counts;
                            newCounts.SubtractNumExistingThreads(1);
                            short newNumExistingThreads = (short)(numExistingThreads - 1);
                            short newNumThreadsGoal     = Math.Max(threadPoolInstance._minThreads, Math.Min(newNumExistingThreads, newCounts.NumThreadsGoal));
                            newCounts.NumThreadsGoal = newNumThreadsGoal;

                            ThreadCounts oldCounts = threadPoolInstance._separated.counts.InterlockedCompareExchange(newCounts, counts);
                            if (oldCounts == counts)
                            {
                                HillClimbing.ThreadPoolHillClimber.ForceChange(newNumThreadsGoal, HillClimbing.StateOrTransition.ThreadTimedOut);

                                if (PortableThreadPoolEventSource.Log.IsEnabled())
                                {
                                    PortableThreadPoolEventSource.Log.ThreadPoolWorkerThreadStop((uint)newNumExistingThreads);
                                }
                                return;
                            }

                            counts = oldCounts;
                        }
                    }
                    finally
                    {
                        hillClimbingThreadAdjustmentLock.Release();
                    }
                }
            }