Example #1
0
        private void ProcessReverse()
        {
            double planningDistance = GetPlanningDistance();

            // update the rndf path
            RelativeTransform relTransfrom = Services.RelativePose.GetTransform(behaviorTimestamp, curTimestamp);
            LinePath          curRndfPath  = rndfPath.Transform(relTransfrom);

            Console.WriteLine("cur rndf path count: " + curRndfPath.Count + ", " + curRndfPath.PathLength);
            Console.WriteLine("cur rndf path zero point valid: " + curRndfPath.ZeroPoint.Valid + ", loc: " + curRndfPath.ZeroPoint.Location + ", index: " + curRndfPath.ZeroPoint.Index);
            Console.WriteLine("planning dist: " + planningDistance + ", stop dist: " + GetSpeedCommandStopDistance());

            // get the path in reverse
            double   dist       = -(planningDistance + TahoeParams.RL + 2);
            LinePath targetPath = curRndfPath.SubPath(curRndfPath.ZeroPoint, ref dist);

            if (dist < 0)
            {
                targetPath.Add(curRndfPath[0] - curRndfPath.GetSegment(0).Vector.Normalize(-dist));
            }

            Console.WriteLine("target path count: " + targetPath.Count + ", " + targetPath.PathLength);
            Console.WriteLine("target path zero point valud: " + targetPath.ZeroPoint.Valid);

            // generate a box by shifting the path
            LinePath leftBound  = targetPath.ShiftLateral(rndfPathWidth / 2.0);
            LinePath rightBound = targetPath.ShiftLateral(-rndfPathWidth / 2.0);

            double leftStartDist, rightStartDist;

            GetLaneBoundStartDists(targetPath, rndfPathWidth, out leftStartDist, out rightStartDist);
            leftBound  = leftBound.RemoveBefore(leftBound.AdvancePoint(leftBound.StartPoint, leftStartDist));
            rightBound = rightBound.RemoveBefore(rightBound.AdvancePoint(rightBound.StartPoint, rightStartDist));

            AddTargetPath(targetPath, 0.0025);
            AddLeftBound(leftBound, false);
            AddRightBound(rightBound, false);

            avoidanceBasePath = targetPath;
            double targetDist = Math.Max(targetPath.PathLength - (TahoeParams.RL + 2), planningDistance);

            smootherBasePath = targetPath.SubPath(targetPath.StartPoint, targetDist);

            settings.maxSpeed            = GetMaxSpeed(null, LinePath.PointOnPath.Invalid);
            settings.endingPositionFixed = true;
            settings.endingPositionMax   = rndfPathWidth / 2.0;
            settings.endingPositionMin   = -rndfPathWidth / 2.0;
            settings.Options.reverse     = true;

            Services.UIService.PushLineList(smootherBasePath, curTimestamp, "subpath", true);
            Services.UIService.PushLineList(leftBound, curTimestamp, "left bound", true);
            Services.UIService.PushLineList(rightBound, curTimestamp, "right bound", true);

            SmoothAndTrack(commandLabel, true);
        }
        /// <summary>
        /// Turn information
        /// </summary>
        /// <param name="entry"></param>
        /// <param name="finalPath"></param>
        /// <param name="leftBound"></param>
        /// <param name="rightBound"></param>
        public static void ZoneTurnInfo(ArbiterInterconnect ai, ArbiterPerimeterWaypoint entry, out LinePath finalPath, out LineList leftBound, out LineList rightBound)
        {
            //Coordinates centerVec = entry.Perimeter.PerimeterPolygon.CalculateBoundingCircle().center - entry.Position;
            Coordinates centerVec = ai.InterconnectPath[1] - ai.InterconnectPath[0];

            centerVec = centerVec.Normalize(TahoeParams.VL);
            finalPath = new LinePath(new Coordinates[] { entry.Position, entry.Position + centerVec });

            leftBound  = finalPath.ShiftLateral(TahoeParams.T * 2.0);
            rightBound = finalPath.ShiftLateral(-TahoeParams.T * 2.0);
        }
Example #3
0
        private static Polygon GenerateSimplePolygon(LinePath path, double width)
        {
            // here is default partition polygon
            LinePath alplb = path.ShiftLateral(-width / 2.0);
            LinePath alprb = path.ShiftLateral(width / 2.0);

            alprb.Reverse();
            List <Coordinates> alpdefaultPoly = alplb;

            alpdefaultPoly.AddRange(alprb);
            return(new Polygon(alpdefaultPoly));
        }
        public Polygon GetForwardPolygon(double distanceForward, double halfWidth)
        {
            LinePath           lp1       = new LinePath(new Coordinates[] { this.Front, this.Front + this.Heading.Normalize(distanceForward) });
            LinePath           lpL       = lp1.ShiftLateral(halfWidth);
            LinePath           lpR       = lp1.ShiftLateral(-halfWidth);
            List <Coordinates> polyCoors = new List <Coordinates>();

            polyCoors.AddRange(lpL);
            polyCoors.AddRange(lpR);
            Polygon p = Polygon.GrahamScan(polyCoors);

            return(p);
        }
 private void GenerateSafetyZone()
 {
     if (!safetyZoneBegin.Location.Equals(safetyZoneEnd.Location))
     {
         LinePath           lp        = new LinePath(new Coordinates[] { safetyZoneBegin.Location, safetyZoneEnd.Location });
         LinePath           lp1       = lp.ShiftLateral(-lane.Width / 2.0);
         LinePath           lp2       = lp.ShiftLateral(lane.Width / 2.0);
         List <Coordinates> aszCoords = lp2;
         aszCoords.AddRange(lp1);
         this.SafetyPolygon = Polygon.GrahamScan(aszCoords);
     }
     else
     {
     }
 }
Example #6
0
        private static Polygon GenerateSimplePartitionPolygon(ArbiterLanePartition alp, LinePath path, double width)
        {
            // here is default partition polygon
            LinePath alplb = path.ShiftLateral(-width / 2.0);
            LinePath alprb = path.ShiftLateral(width / 2.0);

            alprb.Reverse();
            List <Coordinates> alpdefaultPoly = alplb;

            alpdefaultPoly.AddRange(alprb);
            foreach (ArbiterUserWaypoint auw in alp.UserWaypoints)
            {
                alpdefaultPoly.Add(auw.Position);
            }
            return(Polygon.GrahamScan(alpdefaultPoly));
        }
        /// <summary>
        /// Turn information
        /// </summary>
        /// <param name="entry"></param>
        /// <param name="finalPath"></param>
        /// <param name="leftBound"></param>
        /// <param name="rightBound"></param>
        public static void TurnInfo(ArbiterWaypoint entry, out LinePath finalPath, out LineList leftBound, out LineList rightBound)
        {
            if (entry.NextPartition != null)
            {
                double distance = entry.NextPartition.Length;

                // get left bound
                rightBound = GeneralToolkit.TranslateVector(entry.Position, entry.NextPartition.Final.Position,
                                                            entry.NextPartition.Vector().Normalize(entry.Lane.Width / 2.0).RotateM90());

                // get right bound
                leftBound = GeneralToolkit.TranslateVector(entry.Position, entry.NextPartition.Final.Position,
                                                           entry.NextPartition.Vector().Normalize(entry.Lane.Width / 2.0).Rotate90());

                ArbiterWaypoint current = entry.NextPartition.Final;
                while (current.NextPartition != null && distance < 50)
                {
                    distance += current.NextPartition.Length;

                    LineList rtTemp = GeneralToolkit.TranslateVector(current.Position, current.NextPartition.Final.Position,
                                                                     current.NextPartition.Vector().Normalize(current.Lane.Width / 2.0).RotateM90());
                    rightBound.Add(rtTemp[rtTemp.Count - 1]);

                    LineList ltTemp = GeneralToolkit.TranslateVector(current.Position, current.NextPartition.Final.Position,
                                                                     current.NextPartition.Vector().Normalize(current.Lane.Width / 2.0).Rotate90());
                    leftBound.Add(ltTemp[ltTemp.Count - 1]);

                    current = current.NextPartition.Final;
                }

                finalPath = entry.Lane.LanePath(entry, 50.0);
            }
            else
            {
                Coordinates final = entry.Position + entry.PreviousPartition.Vector().Normalize(TahoeParams.VL);
                finalPath = new LinePath(new Coordinates[] { entry.Position, final });
                LinePath lB = finalPath.ShiftLateral(entry.Lane.Width / 2.0);
                LinePath rB = finalPath.ShiftLateral(-entry.Lane.Width / 2.0);
                leftBound  = new LineList(lB);
                rightBound = new LineList(rB);
            }
        }
        /// <summary>
        /// Turn information
        /// </summary>
        /// <param name="entry"></param>
        /// <param name="finalPath"></param>
        /// <param name="leftBound"></param>
        /// <param name="rightBound"></param>
        public static void TurnInfo(ArbiterWaypoint entry, out LinePath finalPath, out LineList leftBound, out LineList rightBound)
        {
            if (entry.NextPartition != null)
            {
                double distance = entry.NextPartition.Length;

                // get left bound
                rightBound = GeneralToolkit.TranslateVector(entry.Position, entry.NextPartition.Final.Position,
                    entry.NextPartition.Vector().Normalize(entry.Lane.Width / 2.0).RotateM90());

                // get right bound
                leftBound = GeneralToolkit.TranslateVector(entry.Position, entry.NextPartition.Final.Position,
                    entry.NextPartition.Vector().Normalize(entry.Lane.Width / 2.0).Rotate90());

                ArbiterWaypoint current = entry.NextPartition.Final;
                while (current.NextPartition != null && distance < 50)
                {
                    distance += current.NextPartition.Length;

                    LineList rtTemp = GeneralToolkit.TranslateVector(current.Position, current.NextPartition.Final.Position,
                    current.NextPartition.Vector().Normalize(current.Lane.Width / 2.0).RotateM90());
                    rightBound.Add(rtTemp[rtTemp.Count - 1]);

                    LineList ltTemp = GeneralToolkit.TranslateVector(current.Position, current.NextPartition.Final.Position,
                    current.NextPartition.Vector().Normalize(current.Lane.Width / 2.0).Rotate90());
                    leftBound.Add(ltTemp[ltTemp.Count - 1]);

                    current = current.NextPartition.Final;
                }

                finalPath = entry.Lane.LanePath(entry, 50.0);
            }
            else
            {
                Coordinates final = entry.Position + entry.PreviousPartition.Vector().Normalize(TahoeParams.VL);
                finalPath = new LinePath(new Coordinates[] { entry.Position, final });
                LinePath lB = finalPath.ShiftLateral(entry.Lane.Width / 2.0);
                LinePath rB = finalPath.ShiftLateral(-entry.Lane.Width / 2.0);
                leftBound = new LineList(lB);
                rightBound = new LineList(rB);
            }
        }
Example #9
0
        public void GenerateInterconnectPolygon(ArbiterInterconnect ai)
        {
            List <Coordinates> polyPoints = new List <Coordinates>();

            try
            {
                // width
                double width = 3.0;
                if (ai.InitialGeneric is ArbiterWaypoint)
                {
                    ArbiterWaypoint aw = (ArbiterWaypoint)ai.InitialGeneric;
                    width = width < aw.Lane.Width ? aw.Lane.Width : width;
                }
                if (ai.FinalGeneric is ArbiterWaypoint)
                {
                    ArbiterWaypoint aw = (ArbiterWaypoint)ai.FinalGeneric;
                    width = width < aw.Lane.Width ? aw.Lane.Width : width;
                }

                if (ai.TurnDirection == ArbiterTurnDirection.UTurn ||
                    ai.TurnDirection == ArbiterTurnDirection.Straight ||
                    !(ai.InitialGeneric is ArbiterWaypoint) ||
                    !(ai.FinalGeneric is ArbiterWaypoint))
                {
                    LinePath lp = ai.InterconnectPath.ShiftLateral(width / 2.0);
                    LinePath rp = ai.InterconnectPath.ShiftLateral(-width / 2.0);
                    polyPoints.AddRange(lp);
                    polyPoints.AddRange(rp);
                    ai.TurnPolygon = Polygon.GrahamScan(polyPoints);

                    if (ai.TurnDirection == ArbiterTurnDirection.UTurn)
                    {
                        List <Coordinates> updatedPts = new List <Coordinates>();
                        LinePath           interTmp   = ai.InterconnectPath.Clone();
                        Coordinates        pathVec    = ai.FinalGeneric.Position - ai.InitialGeneric.Position;
                        interTmp[1] = interTmp[1] + pathVec.Normalize(width / 2.0);
                        interTmp[0] = interTmp[0] - pathVec.Normalize(width / 2.0);
                        lp          = interTmp.ShiftLateral(TahoeParams.VL);
                        rp          = interTmp.ShiftLateral(-TahoeParams.VL);
                        updatedPts.AddRange(lp);
                        updatedPts.AddRange(rp);
                        ai.TurnPolygon = Polygon.GrahamScan(updatedPts);
                    }
                }
                else
                {
                    // polygon points
                    List <Coordinates> interPoints = new List <Coordinates>();

                    // waypoint
                    ArbiterWaypoint awI = (ArbiterWaypoint)ai.InitialGeneric;
                    ArbiterWaypoint awF = (ArbiterWaypoint)ai.FinalGeneric;

                    // left and right path
                    LinePath leftPath  = new LinePath();
                    LinePath rightPath = new LinePath();

                    // some initial points
                    LinePath initialPath = new LinePath(new Coordinates[] { awI.PreviousPartition.Initial.Position, awI.Position });
                    LinePath il          = initialPath.ShiftLateral(width / 2.0);
                    LinePath ir          = initialPath.ShiftLateral(-width / 2.0);
                    leftPath.Add(il[1]);
                    rightPath.Add(ir[1]);

                    // some final points
                    LinePath finalPath = new LinePath(new Coordinates[] { awF.Position, awF.NextPartition.Final.Position });
                    LinePath fl        = finalPath.ShiftLateral(width / 2.0);
                    LinePath fr        = finalPath.ShiftLateral(-width / 2.0);
                    leftPath.Add(fl[0]);
                    rightPath.Add(fr[0]);

                    // initial and final paths
                    Line iPath = new Line(awI.PreviousPartition.Initial.Position, awI.Position);
                    Line fPath = new Line(awF.Position, awF.NextPartition.Final.Position);

                    // get where the paths intersect and vector to normal path
                    Coordinates c;
                    iPath.Intersect(fPath, out c);
                    Coordinates vector = ai.InterconnectPath.GetClosestPoint(c).Location - c;
                    Coordinates center = c + vector.Normalize((vector.Length / 2.0));

                    // get width expansion
                    Coordinates iVec = awI.PreviousPartition != null?awI.PreviousPartition.Vector().Normalize(1.0) : awI.NextPartition.Vector().Normalize(1.0);

                    double      iRot = -iVec.ArcTan;
                    Coordinates fVec = awF.NextPartition != null?awF.NextPartition.Vector().Normalize(1.0) : awF.PreviousPartition.Vector().Normalize(1.0);

                    fVec = fVec.Rotate(iRot);
                    double fDeg        = fVec.ToDegrees();
                    double arcTan      = Math.Atan2(fVec.Y, fVec.X) * 180.0 / Math.PI;
                    double centerWidth = width + width * 2.0 * Math.Abs(arcTan) / 90.0;

                    // get inner point (small scale)
                    Coordinates innerPoint = center + vector.Normalize(centerWidth / 4.0);

                    // get outer
                    Coordinates outerPoint = center - vector.Normalize(centerWidth / 2.0);

                    if (ai.TurnDirection == ArbiterTurnDirection.Right)
                    {
                        rightPath.Insert(1, innerPoint);
                        ai.InnerCoordinates = rightPath;
                        leftPath.Reverse();
                        leftPath.Insert(1, outerPoint);
                        Polygon p = new Polygon(leftPath.ToArray());
                        p.AddRange(rightPath.ToArray());
                        ai.TurnPolygon = p;
                    }
                    else
                    {
                        leftPath.Insert(1, innerPoint);
                        ai.InnerCoordinates = leftPath;
                        rightPath.Reverse();
                        rightPath.Insert(1, outerPoint);
                        Polygon p = new Polygon(leftPath.ToArray());
                        p.AddRange(rightPath.ToArray());
                        ai.TurnPolygon = p;
                    }
                }
            }
            catch (Exception e)
            {
                Console.WriteLine("error generating turn polygon: " + ai.ToString());
                ai.TurnPolygon = ai.DefaultPoly();
            }
        }
        /// <summary>
        /// Plans over the zone
        /// </summary>
        /// <param name="planningState"></param>
        /// <param name="navigationalPlan"></param>
        /// <param name="vehicleState"></param>
        /// <param name="vehicles"></param>
        /// <param name="obstacles"></param>
        /// <param name="blockages"></param>
        /// <returns></returns>
        public Maneuver Plan(IState planningState, INavigationalPlan navigationalPlan,
                             VehicleState vehicleState, SceneEstimatorTrackedClusterCollection vehicles,
                             SceneEstimatorUntrackedClusterCollection obstacles, List <ITacticalBlockage> blockages)
        {
            #region Zone Travelling State

            if (planningState is ZoneTravelingState)
            {
                // check blockages

                /*if (blockages != null && blockages.Count > 0 && blockages[0] is ZoneBlockage)
                 * {
                 *      // create the blockage state
                 *      EncounteredBlockageState ebs = new EncounteredBlockageState(blockages[0], CoreCommon.CorePlanningState);
                 *
                 *      // go to a blockage handling tactical
                 *      return new Maneuver(new NullBehavior(), ebs, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                 * }*/

                // cast state
                ZoneState zs = (ZoneState)planningState;

                // plan over state and zone
                ZonePlan zp = (ZonePlan)navigationalPlan;

                // check zone path does not exist
                if (zp.RecommendedPath.Count < 2)
                {
                    // zone startup again
                    ZoneStartupState zss = new ZoneStartupState(zs.Zone, true);
                    return(new Maneuver(new HoldBrakeBehavior(), zss, TurnDecorators.NoDecorators, vehicleState.Timestamp));
                }

                // final path seg
                LinePath.PointOnPath endBack = zp.RecommendedPath.AdvancePoint(zp.RecommendedPath.EndPoint, -TahoeParams.VL);
                LinePath             lp      = zp.RecommendedPath.SubPath(endBack, zp.RecommendedPath.EndPoint);
                LinePath             lB      = lp.ShiftLateral(TahoeParams.T);
                LinePath             rB      = lp.ShiftLateral(-TahoeParams.T);

                // add to info
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(lB, ArbiterInformationDisplayObjectType.leftBound));
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(rB, ArbiterInformationDisplayObjectType.rightBound));

                // get speed command
                ScalarSpeedCommand sc = new ScalarSpeedCommand(2.24);

                // Behavior
                Behavior b = new ZoneTravelingBehavior(zp.Zone.ZoneId, zp.Zone.Perimeter.PerimeterPolygon, zp.Zone.StayOutAreas.ToArray(),
                                                       sc, zp.RecommendedPath, lB, rB);

                // maneuver
                return(new Maneuver(b, CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp));
            }

            #endregion

            #region Parking State

            else if (planningState is ParkingState)
            {
                // get state
                ParkingState ps = (ParkingState)planningState;

                // determine stay out areas to use
                List <Polygon> stayOuts = new List <Polygon>();
                foreach (Polygon p in ps.Zone.StayOutAreas)
                {
                    if (!p.IsInside(ps.ParkingSpot.NormalWaypoint.Position) && !p.IsInside(ps.ParkingSpot.Checkpoint.Position))
                    {
                        stayOuts.Add(p);
                    }
                }

                LinePath rB = ps.ParkingSpot.GetRightBound();
                LinePath lB = ps.ParkingSpot.GetLeftBound();

                // add to info
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(lB, ArbiterInformationDisplayObjectType.leftBound));
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(rB, ArbiterInformationDisplayObjectType.rightBound));

                // create behavior
                ZoneParkingBehavior zpb = new ZoneParkingBehavior(ps.Zone.ZoneId, ps.Zone.Perimeter.PerimeterPolygon, stayOuts.ToArray(), new ScalarSpeedCommand(2.24),
                                                                  ps.ParkingSpot.GetSpotPath(), lB, rB, ps.ParkingSpot.SpotId, 1.0);

                // maneuver
                return(new Maneuver(zpb, ps, TurnDecorators.NoDecorators, vehicleState.Timestamp));
            }

            #endregion

            #region Pulling Out State

            else if (planningState is PullingOutState)
            {
                // get state
                PullingOutState pos = (PullingOutState)planningState;

                // plan over state and zone
                ZonePlan zp = (ZonePlan)navigationalPlan;

                // final path seg
                Coordinates endVec  = zp.RecommendedPath[0] - zp.RecommendedPath[1];
                Coordinates endBack = zp.RecommendedPath[0] + endVec.Normalize(TahoeParams.VL * 2.0);
                LinePath    rp      = new LinePath(new Coordinates[] { pos.ParkingSpot.Checkpoint.Position, pos.ParkingSpot.NormalWaypoint.Position,
                                                                       zp.RecommendedPath[0], endBack });
                LinePath lp = new LinePath(new Coordinates[] { zp.RecommendedPath[0], endBack });
                LinePath lB = lp.ShiftLateral(TahoeParams.T * 2.0);
                LinePath rB = lp.ShiftLateral(-TahoeParams.T * 2.0);

                // add to info
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(lB, ArbiterInformationDisplayObjectType.leftBound));
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(rB, ArbiterInformationDisplayObjectType.rightBound));
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(rp, ArbiterInformationDisplayObjectType.leftBound));

                // determine stay out areas to use
                List <Polygon> stayOuts = new List <Polygon>();
                foreach (Polygon p in pos.Zone.StayOutAreas)
                {
                    if (!p.IsInside(pos.ParkingSpot.NormalWaypoint.Position) && !p.IsInside(pos.ParkingSpot.Checkpoint.Position))
                    {
                        stayOuts.Add(p);
                    }
                }

                // get speed command
                ScalarSpeedCommand sc = new ScalarSpeedCommand(2.24);

                // Behavior
                Behavior b = new ZoneParkingPullOutBehavior(zp.Zone.ZoneId, zp.Zone.Perimeter.PerimeterPolygon, stayOuts.ToArray(),
                                                            sc, pos.ParkingSpot.GetSpotPath(), pos.ParkingSpot.GetLeftBound(), pos.ParkingSpot.GetRightBound(), pos.ParkingSpot.SpotId,
                                                            rp, lB, rB);

                // maneuver
                return(new Maneuver(b, pos, TurnDecorators.NoDecorators, vehicleState.Timestamp));
            }

            #endregion

            #region Zone Startup State

            else if (planningState is ZoneStartupState)
            {
                // state
                ZoneStartupState zss = (ZoneStartupState)planningState;

                // get the zone
                ArbiterZone az = zss.Zone;

                // navigational edge
                INavigableNode inn = CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId];

                // check over all the parking spaces
                foreach (ArbiterParkingSpot aps in az.ParkingSpots)
                {
                    // inside both parts of spot
                    if ((vehicleState.VehiclePolygon.IsInside(aps.NormalWaypoint.Position) && vehicleState.VehiclePolygon.IsInside(aps.Checkpoint.Position)) ||
                        (vehicleState.VehiclePolygon.IsInside(aps.NormalWaypoint.Position)))
                    {
                        // want to just park in it again
                        return(new Maneuver(new HoldBrakeBehavior(), new ParkingState(az, aps), TurnDecorators.NoDecorators, vehicleState.Timestamp));
                    }
                }

                Polygon forwardPolygon = vehicleState.ForwardPolygon;
                Polygon rearPolygon    = vehicleState.RearPolygon;

                Navigator nav = CoreCommon.Navigation;
                List <ZoneNavigationEdgeSort> forwardForward             = new List <ZoneNavigationEdgeSort>();
                List <ZoneNavigationEdgeSort> reverseReverse             = new List <ZoneNavigationEdgeSort>();
                List <ZoneNavigationEdgeSort> perpendicularPerpendicular = new List <ZoneNavigationEdgeSort>();
                List <ZoneNavigationEdgeSort> allEdges         = new List <ZoneNavigationEdgeSort>();
                List <ZoneNavigationEdgeSort> allEdgesNoLimits = new List <ZoneNavigationEdgeSort>();
                foreach (NavigableEdge ne in az.NavigableEdges)
                {
                    if (!(ne.End is ArbiterParkingSpotWaypoint) && !(ne.Start is ArbiterParkingSpotWaypoint))
                    {
                        // get distance to edge
                        LinePath lp      = new LinePath(new Coordinates[] { ne.Start.Position, ne.End.Position });
                        double   distTmp = lp.GetClosestPoint(vehicleState.Front).Location.DistanceTo(vehicleState.Front);

                        // get direction along segment
                        DirectionAlong da = vehicleState.DirectionAlongSegment(lp);

                        // check dist reasonable
                        if (distTmp > TahoeParams.VL)
                        {
                            // zone navigation edge sort item
                            ZoneNavigationEdgeSort znes = new ZoneNavigationEdgeSort(distTmp, ne, lp);

                            // add to lists
                            if (da == DirectionAlong.Forwards &&
                                (forwardPolygon.IsInside(ne.Start.Position) || forwardPolygon.IsInside(ne.End.Position)))
                            {
                                forwardForward.Add(znes);
                            }

                            /*else if (da == DirectionAlong.Perpendicular &&
                             *      !(forwardPolygon.IsInside(ne.Start.Position) || forwardPolygon.IsInside(ne.End.Position)) &&
                             *      !(rearPolygon.IsInside(ne.Start.Position) || rearPolygon.IsInside(ne.End.Position)))
                             *      perpendicularPerpendicular.Add(znes);
                             * else if (rearPolygon.IsInside(ne.Start.Position) || rearPolygon.IsInside(ne.End.Position))
                             *      reverseReverse.Add(znes);*/

                            // add to all edges
                            allEdges.Add(znes);
                        }
                    }
                }

                // sort by distance
                forwardForward.Sort();
                reverseReverse.Sort();
                perpendicularPerpendicular.Sort();
                allEdges.Sort();

                ZoneNavigationEdgeSort bestZnes = null;

                for (int i = 0; i < allEdges.Count; i++)
                {
                    // get line to initial
                    Line          toInitial  = new Line(vehicleState.Front, allEdges[i].edge.Start.Position);
                    Line          toFinal    = new Line(vehicleState.Front, allEdges[i].edge.End.Position);
                    bool          intersects = false;
                    Coordinates[] interPts;
                    foreach (Polygon sop in az.StayOutAreas)
                    {
                        if (!intersects &&
                            (sop.Intersect(toInitial, out interPts) && sop.Intersect(toFinal, out interPts)))
                        {
                            intersects = true;
                        }
                    }

                    if (!intersects)
                    {
                        allEdges[i].zp       = nav.PlanZone(az, allEdges[i].edge.End, inn);
                        allEdges[i].zp.Time += vehicleState.Front.DistanceTo(allEdges[i].lp.GetClosestPoint(vehicleState.Front).Location) / 2.24;
                        ZoneNavigationEdgeSort tmpZnes = allEdges[i];
                        if ((bestZnes == null && tmpZnes.zp.RecommendedPath.Count > 1) ||
                            (bestZnes != null && tmpZnes.zp.RecommendedPath.Count > 1 && tmpZnes.zp.Time < bestZnes.zp.Time))
                        {
                            bestZnes = tmpZnes;
                        }
                    }

                    if (i > allEdges.Count / 2 && bestZnes != null)
                    {
                        break;
                    }
                }

                if (bestZnes != null)
                {
                    ArbiterOutput.Output("Found good edge to start in zone");
                    return(new Maneuver(new HoldBrakeBehavior(), new ZoneOrientationState(az, bestZnes.edge), TurnDecorators.NoDecorators, vehicleState.Timestamp));
                }
                else
                {
                    ArbiterOutput.Output("Could not find good edge to start, choosing random not blocked");

                    List <ZoneNavigationEdgeSort> okZnes = new List <ZoneNavigationEdgeSort>();
                    foreach (NavigableEdge tmpOk in az.NavigableEdges)
                    {
                        // get line to initial
                        LinePath edgePath = new LinePath(new Coordinates[] { tmpOk.Start.Position, tmpOk.End.Position });
                        double   dist     = edgePath.GetClosestPoint(vehicleState.Front).Location.DistanceTo(vehicleState.Front);
                        ZoneNavigationEdgeSort tmpZnes = new ZoneNavigationEdgeSort(dist, tmpOk, edgePath);
                        tmpZnes.zp       = nav.PlanZone(az, tmpZnes.edge.End, inn);
                        tmpZnes.zp.Time += vehicleState.Front.DistanceTo(tmpZnes.lp.GetClosestPoint(vehicleState.Front).Location) / 2.24;
                        if (tmpZnes.zp.RecommendedPath.Count >= 2)
                        {
                            okZnes.Add(tmpZnes);
                        }
                    }

                    if (okZnes.Count == 0)
                    {
                        okZnes = allEdges;
                    }
                    else
                    {
                        okZnes.Sort();
                    }

                    // get random close edge
                    Random rand   = new Random();
                    int    chosen = rand.Next(Math.Min(5, okZnes.Count));

                    // get closest edge not part of a parking spot, get on it
                    NavigableEdge closest = okZnes[chosen].edge;                    //null;
                    //double distance = Double.MaxValue;

                    /*foreach (NavigableEdge ne in az.NavigableEdges)
                     * {
                     *      if (!(ne.End is ArbiterParkingSpotWaypoint) && !(ne.Start is ArbiterParkingSpotWaypoint))
                     *      {
                     *              // get distance to edge
                     *              LinePath lp = new LinePath(new Coordinates[] { ne.Start.Position, ne.End.Position });
                     *              double distTmp = lp.GetClosestPoint(vehicleState.Front).Location.DistanceTo(vehicleState.Front);
                     *              if (closest == null || distTmp < distance)
                     *              {
                     *                      closest = ne;
                     *                      distance = distTmp;
                     *              }
                     *      }
                     * }*/
                    return(new Maneuver(new HoldBrakeBehavior(), new ZoneOrientationState(az, closest), TurnDecorators.NoDecorators, vehicleState.Timestamp));
                }
            }

            #endregion

            #region Unknown

            else
            {
                // non-handled state
                throw new ArgumentException("Unknown state", "CoreCommon.CorePlanningState");
            }

            #endregion
        }
 public Polygon GetForwardPolygon(double distanceForward, double halfWidth)
 {
     LinePath lp1 = new LinePath(new Coordinates[] { this.Front, this.Front + this.Heading.Normalize(distanceForward) });
     LinePath lpL = lp1.ShiftLateral(halfWidth);
     LinePath lpR = lp1.ShiftLateral(-halfWidth);
     List<Coordinates> polyCoors = new List<Coordinates>();
     polyCoors.AddRange(lpL);
     polyCoors.AddRange(lpR);
     Polygon p = Polygon.GrahamScan(polyCoors);
     return p;
 }
        /// <summary>
        /// Plans over the zone
        /// </summary>
        /// <param name="planningState"></param>
        /// <param name="navigationalPlan"></param>
        /// <param name="vehicleState"></param>
        /// <param name="vehicles"></param>
        /// <param name="obstacles"></param>
        /// <param name="blockages"></param>
        /// <returns></returns>
        public Maneuver Plan(IState planningState, INavigationalPlan navigationalPlan, 
            VehicleState vehicleState, SceneEstimatorTrackedClusterCollection vehicles,
            SceneEstimatorUntrackedClusterCollection obstacles, List<ITacticalBlockage> blockages)
        {
            #region Zone Travelling State

            if (planningState is ZoneTravelingState)
            {
                // check blockages
                /*if (blockages != null && blockages.Count > 0 && blockages[0] is ZoneBlockage)
                {
                    // create the blockage state
                    EncounteredBlockageState ebs = new EncounteredBlockageState(blockages[0], CoreCommon.CorePlanningState);

                    // go to a blockage handling tactical
                    return new Maneuver(new NullBehavior(), ebs, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                }*/

                // cast state
                ZoneState zs = (ZoneState)planningState;

                // plan over state and zone
                ZonePlan zp = (ZonePlan)navigationalPlan;

                // check zone path does not exist
                if (zp.RecommendedPath.Count < 2)
                {
                    // zone startup again
                    ZoneStartupState zss = new ZoneStartupState(zs.Zone, true);
                    return new Maneuver(new HoldBrakeBehavior(), zss, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                }

                // final path seg
                LinePath.PointOnPath endBack = zp.RecommendedPath.AdvancePoint(zp.RecommendedPath.EndPoint, -TahoeParams.VL);
                LinePath lp = zp.RecommendedPath.SubPath(endBack, zp.RecommendedPath.EndPoint);
                LinePath lB = lp.ShiftLateral(TahoeParams.T);
                LinePath rB = lp.ShiftLateral(-TahoeParams.T);

                // add to info
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(lB, ArbiterInformationDisplayObjectType.leftBound));
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(rB, ArbiterInformationDisplayObjectType.rightBound));

                // get speed command
                ScalarSpeedCommand sc = new ScalarSpeedCommand(2.24);

                // Behavior
                Behavior b = new ZoneTravelingBehavior(zp.Zone.ZoneId, zp.Zone.Perimeter.PerimeterPolygon, zp.Zone.StayOutAreas.ToArray(),
                    sc, zp.RecommendedPath, lB, rB);

                // maneuver
                return new Maneuver(b, CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
            }

            #endregion

            #region Parking State

            else if (planningState is ParkingState)
            {
                // get state
                ParkingState ps = (ParkingState)planningState;

                // determine stay out areas to use
                List<Polygon> stayOuts = new List<Polygon>();
                foreach (Polygon p in ps.Zone.StayOutAreas)
                {
                    if (!p.IsInside(ps.ParkingSpot.NormalWaypoint.Position) && !p.IsInside(ps.ParkingSpot.Checkpoint.Position))
                        stayOuts.Add(p);
                }

                LinePath rB = ps.ParkingSpot.GetRightBound();
                LinePath lB = ps.ParkingSpot.GetLeftBound();

                // add to info
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(lB, ArbiterInformationDisplayObjectType.leftBound));
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(rB, ArbiterInformationDisplayObjectType.rightBound));

                // create behavior
                ZoneParkingBehavior zpb = new ZoneParkingBehavior(ps.Zone.ZoneId, ps.Zone.Perimeter.PerimeterPolygon, stayOuts.ToArray(), new ScalarSpeedCommand(2.24),
                    ps.ParkingSpot.GetSpotPath(), lB, rB, ps.ParkingSpot.SpotId, 1.0);

                // maneuver
                return new Maneuver(zpb, ps, TurnDecorators.NoDecorators, vehicleState.Timestamp);
            }

            #endregion

            #region Pulling Out State

            else if (planningState is PullingOutState)
            {
                // get state
                PullingOutState pos = (PullingOutState)planningState;

                // plan over state and zone
                ZonePlan zp = (ZonePlan)navigationalPlan;

                // final path seg
                Coordinates endVec = zp.RecommendedPath[0] - zp.RecommendedPath[1];
                Coordinates endBack = zp.RecommendedPath[0] + endVec.Normalize(TahoeParams.VL * 2.0);
                LinePath rp = new LinePath(new Coordinates[]{pos.ParkingSpot.Checkpoint.Position, pos.ParkingSpot.NormalWaypoint.Position,
                    zp.RecommendedPath[0], endBack});
                LinePath lp = new LinePath(new Coordinates[]{zp.RecommendedPath[0], endBack});
                LinePath lB = lp.ShiftLateral(TahoeParams.T * 2.0);
                LinePath rB = lp.ShiftLateral(-TahoeParams.T * 2.0);

                // add to info
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(lB, ArbiterInformationDisplayObjectType.leftBound));
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(rB, ArbiterInformationDisplayObjectType.rightBound));
                CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(rp, ArbiterInformationDisplayObjectType.leftBound));

                // determine stay out areas to use
                List<Polygon> stayOuts = new List<Polygon>();
                foreach (Polygon p in pos.Zone.StayOutAreas)
                {
                    if (!p.IsInside(pos.ParkingSpot.NormalWaypoint.Position) && !p.IsInside(pos.ParkingSpot.Checkpoint.Position))
                        stayOuts.Add(p);
                }

                // get speed command
                ScalarSpeedCommand sc = new ScalarSpeedCommand(2.24);

                // Behavior
                Behavior b = new ZoneParkingPullOutBehavior(zp.Zone.ZoneId, zp.Zone.Perimeter.PerimeterPolygon, stayOuts.ToArray(),
                    sc, pos.ParkingSpot.GetSpotPath(), pos.ParkingSpot.GetLeftBound(), pos.ParkingSpot.GetRightBound(), pos.ParkingSpot.SpotId,
                    rp, lB, rB);

                // maneuver
                return new Maneuver(b, pos, TurnDecorators.NoDecorators, vehicleState.Timestamp);
            }

            #endregion

            #region Zone Startup State

            else if (planningState is ZoneStartupState)
            {
                // state
                ZoneStartupState zss = (ZoneStartupState)planningState;

                // get the zone
                ArbiterZone az = zss.Zone;

                // navigational edge
                INavigableNode inn = CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId];

                // check over all the parking spaces
                foreach (ArbiterParkingSpot aps in az.ParkingSpots)
                {
                    // inside both parts of spot
                    if ((vehicleState.VehiclePolygon.IsInside(aps.NormalWaypoint.Position) && vehicleState.VehiclePolygon.IsInside(aps.Checkpoint.Position)) ||
                        (vehicleState.VehiclePolygon.IsInside(aps.NormalWaypoint.Position)))
                    {
                        // want to just park in it again
                        return new Maneuver(new HoldBrakeBehavior(), new ParkingState(az, aps), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                }

                Polygon forwardPolygon = vehicleState.ForwardPolygon;
                Polygon rearPolygon = vehicleState.RearPolygon;

                Navigator nav = CoreCommon.Navigation;
                List<ZoneNavigationEdgeSort> forwardForward = new List<ZoneNavigationEdgeSort>();
                List<ZoneNavigationEdgeSort> reverseReverse = new List<ZoneNavigationEdgeSort>();
                List<ZoneNavigationEdgeSort> perpendicularPerpendicular = new List<ZoneNavigationEdgeSort>();
                List<ZoneNavigationEdgeSort> allEdges = new List<ZoneNavigationEdgeSort>();
                List<ZoneNavigationEdgeSort> allEdgesNoLimits = new List<ZoneNavigationEdgeSort>();
                foreach (NavigableEdge ne in az.NavigableEdges)
                {
                    if (!(ne.End is ArbiterParkingSpotWaypoint) && !(ne.Start is ArbiterParkingSpotWaypoint))
                    {
                        // get distance to edge
                        LinePath lp = new LinePath(new Coordinates[] { ne.Start.Position, ne.End.Position });
                        double distTmp = lp.GetClosestPoint(vehicleState.Front).Location.DistanceTo(vehicleState.Front);

                        // get direction along segment
                        DirectionAlong da = vehicleState.DirectionAlongSegment(lp);

                        // check dist reasonable
                        if (distTmp > TahoeParams.VL)
                        {
                            // zone navigation edge sort item
                            ZoneNavigationEdgeSort znes = new ZoneNavigationEdgeSort(distTmp, ne, lp);

                            // add to lists
                            if (da == DirectionAlong.Forwards &&
                                (forwardPolygon.IsInside(ne.Start.Position) || forwardPolygon.IsInside(ne.End.Position)))
                                forwardForward.Add(znes);
                            /*else if (da == DirectionAlong.Perpendicular &&
                                !(forwardPolygon.IsInside(ne.Start.Position) || forwardPolygon.IsInside(ne.End.Position)) &&
                                !(rearPolygon.IsInside(ne.Start.Position) || rearPolygon.IsInside(ne.End.Position)))
                                perpendicularPerpendicular.Add(znes);
                            else if (rearPolygon.IsInside(ne.Start.Position) || rearPolygon.IsInside(ne.End.Position))
                                reverseReverse.Add(znes);*/

                            // add to all edges
                            allEdges.Add(znes);
                        }
                    }
                }

                // sort by distance
                forwardForward.Sort();
                reverseReverse.Sort();
                perpendicularPerpendicular.Sort();
                allEdges.Sort();

                ZoneNavigationEdgeSort bestZnes = null;

                for (int i = 0; i < allEdges.Count; i++)
                {
                    // get line to initial
                    Line toInitial = new Line(vehicleState.Front, allEdges[i].edge.Start.Position);
                    Line toFinal = new Line(vehicleState.Front, allEdges[i].edge.End.Position);
                    bool intersects = false;
                    Coordinates[] interPts;
                    foreach (Polygon sop in az.StayOutAreas)
                    {
                        if (!intersects &&
                            (sop.Intersect(toInitial, out interPts) && sop.Intersect(toFinal, out interPts)))
                            intersects = true;
                    }

                    if (!intersects)
                    {
                        allEdges[i].zp = nav.PlanZone(az, allEdges[i].edge.End, inn);
                        allEdges[i].zp.Time += vehicleState.Front.DistanceTo(allEdges[i].lp.GetClosestPoint(vehicleState.Front).Location) / 2.24;
                        ZoneNavigationEdgeSort tmpZnes = allEdges[i];
                        if ((bestZnes == null && tmpZnes.zp.RecommendedPath.Count > 1) ||
                                (bestZnes != null && tmpZnes.zp.RecommendedPath.Count > 1 && tmpZnes.zp.Time < bestZnes.zp.Time))
                            bestZnes = tmpZnes;
                    }

                    if (i > allEdges.Count / 2 && bestZnes != null)
                        break;
                }

                if (bestZnes != null)
                {
                    ArbiterOutput.Output("Found good edge to start in zone");
                    return new Maneuver(new HoldBrakeBehavior(), new ZoneOrientationState(az, bestZnes.edge), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                }
                else
                {
                    ArbiterOutput.Output("Could not find good edge to start, choosing random not blocked");

                    List<ZoneNavigationEdgeSort> okZnes = new List<ZoneNavigationEdgeSort>();
                    foreach (NavigableEdge tmpOk in az.NavigableEdges)
                    {
                        // get line to initial
                        LinePath edgePath = new LinePath(new Coordinates[] { tmpOk.Start.Position, tmpOk.End.Position });
                        double dist = edgePath.GetClosestPoint(vehicleState.Front).Location.DistanceTo(vehicleState.Front);
                        ZoneNavigationEdgeSort tmpZnes = new ZoneNavigationEdgeSort(dist, tmpOk, edgePath);
                        tmpZnes.zp = nav.PlanZone(az, tmpZnes.edge.End, inn);
                        tmpZnes.zp.Time += vehicleState.Front.DistanceTo(tmpZnes.lp.GetClosestPoint(vehicleState.Front).Location) / 2.24;
                        if (tmpZnes.zp.RecommendedPath.Count >= 2)
                            okZnes.Add(tmpZnes);
                    }

                    if (okZnes.Count == 0)
                        okZnes = allEdges;
                    else
                        okZnes.Sort();

                    // get random close edge
                    Random rand = new Random();
                    int chosen = rand.Next(Math.Min(5, okZnes.Count));

                    // get closest edge not part of a parking spot, get on it
                    NavigableEdge closest = okZnes[chosen].edge;//null;
                    //double distance = Double.MaxValue;
                    /*foreach (NavigableEdge ne in az.NavigableEdges)
                    {
                        if (!(ne.End is ArbiterParkingSpotWaypoint) && !(ne.Start is ArbiterParkingSpotWaypoint))
                        {
                            // get distance to edge
                            LinePath lp = new LinePath(new Coordinates[] { ne.Start.Position, ne.End.Position });
                            double distTmp = lp.GetClosestPoint(vehicleState.Front).Location.DistanceTo(vehicleState.Front);
                            if (closest == null || distTmp < distance)
                            {
                                closest = ne;
                                distance = distTmp;
                            }
                        }
                    }*/
                    return new Maneuver(new HoldBrakeBehavior(), new ZoneOrientationState(az, closest), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                }
            }

            #endregion

            #region Unknown

            else
            {
                // non-handled state
                throw new ArgumentException("Unknown state", "CoreCommon.CorePlanningState");
            }

            #endregion
        }
Example #13
0
        public static Polygon PartitionPolygon(ArbiterLanePartition alp)
        {
            if (alp.Initial.PreviousPartition != null &&
                alp.Final.NextPartition != null &&
                alp.Length < 30.0 && alp.Length > 4.0)
            {
                // get partition turn direction
                ArbiterTurnDirection pTD = PartitionTurnDirection(alp);

                // check if angles of previous and next are such that not straight through
                if (pTD != ArbiterTurnDirection.Straight)
                {
                    // get partition poly
                    ArbiterInterconnect tmpAi = alp.ToInterconnect;
                    tmpAi.TurnDirection = pTD;
                    GenerateInterconnectPolygon(tmpAi);
                    Polygon pPoly = tmpAi.TurnPolygon;

                    // here is default partition polygon
                    LinePath alplb = alp.PartitionPath.ShiftLateral(-alp.Lane.Width / 2.0);
                    LinePath alprb = alp.PartitionPath.ShiftLateral(alp.Lane.Width / 2.0);
                    alprb.Reverse();
                    List <Coordinates> alpdefaultPoly = alplb;
                    alpdefaultPoly.AddRange(alprb);

                    // get full poly
                    pPoly.AddRange(alpdefaultPoly);
                    pPoly = Polygon.GrahamScan(pPoly);

                    return(pPoly);
                }
            }
            else if (alp.Length >= 30)
            {
                Polygon pBase = GenerateSimplePartitionPolygon(alp, alp.PartitionPath, alp.Lane.Width);

                if (alp.Initial.PreviousPartition != null && Math.Abs(FinalIntersectionAngle(alp.Initial.PreviousPartition)) > 15)
                {
                    // initial portion
                    Coordinates i1   = alp.Initial.Position - alp.Initial.PreviousPartition.Vector().Normalize(15.0);
                    Coordinates i2   = alp.Initial.Position;
                    Coordinates i3   = i2 + alp.Vector().Normalize(15.0);
                    LinePath    il12 = new LinePath(new Coordinates[] { i1, i2 });
                    LinePath    il23 = new LinePath(new Coordinates[] { i2, i3 });
                    LinePath    il13 = new LinePath(new Coordinates[] { i1, i3 });
                    Coordinates iCC  = il13.GetClosestPoint(i2).Location;
                    if (GeneralToolkit.TriangleArea(i1, i2, i3) < 0)
                    {
                        il13 = il13.ShiftLateral(iCC.DistanceTo(i2) + alp.Lane.Width / 2.0);
                    }
                    else
                    {
                        il13 = il13.ShiftLateral(-iCC.DistanceTo(i2) + alp.Lane.Width / 2.0);
                    }
                    LinePath.PointOnPath iCCP = il13.GetClosestPoint(iCC);
                    iCCP = il13.AdvancePoint(iCCP, -10.0);
                    il13 = il13.SubPath(iCCP, 20.0);
                    Polygon iBase = GenerateSimplePolygon(il23, alp.Lane.Width);
                    iBase.Add(il13[1]);
                    Polygon iP = Polygon.GrahamScan(iBase);
                    pBase = PolygonToolkit.PolygonUnion(new List <Polygon>(new Polygon[] { pBase, iP }));
                }

                if (alp.Final.NextPartition != null && Math.Abs(FinalIntersectionAngle(alp)) > 15)
                {
                    // initial portion
                    Coordinates i1   = alp.Final.Position - alp.Vector().Normalize(15.0);
                    Coordinates i2   = alp.Final.Position;
                    Coordinates i3   = i2 + alp.Final.NextPartition.Vector().Normalize(15.0);
                    LinePath    il12 = new LinePath(new Coordinates[] { i1, i2 });
                    LinePath    il23 = new LinePath(new Coordinates[] { i2, i3 });
                    LinePath    il13 = new LinePath(new Coordinates[] { i1, i3 });
                    Coordinates iCC  = il13.GetClosestPoint(i2).Location;
                    if (GeneralToolkit.TriangleArea(i1, i2, i3) < 0)
                    {
                        il13 = il13.ShiftLateral(iCC.DistanceTo(i2) + alp.Lane.Width / 2.0);
                    }
                    else
                    {
                        il13 = il13.ShiftLateral(-iCC.DistanceTo(i2) + alp.Lane.Width / 2.0);
                    }
                    LinePath.PointOnPath iCCP = il13.GetClosestPoint(iCC);
                    iCCP = il13.AdvancePoint(iCCP, -10.0);
                    il13 = il13.SubPath(iCCP, 20.0);
                    Polygon iBase = GenerateSimplePolygon(il12, alp.Lane.Width);
                    iBase.Add(il13[0]);
                    Polygon iP = Polygon.GrahamScan(iBase);
                    pBase = PolygonToolkit.PolygonUnion(new List <Polygon>(new Polygon[] { pBase, iP }));
                }

                return(pBase);
            }

            // fall out
            return(null);
        }
Example #14
0
        public static bool TestBlockage(IList <Polygon> obstaclePolygons, LinePath leftBound, LinePath rightBound)
        {
            try
            {
                double  expandDist  = TahoeParams.T / 2.0 + 0.3;
                Circle  tahoeCircle = new Circle(expandDist, Coordinates.Zero);
                Polygon tahoePoly   = tahoeCircle.ToPolygon(24);

                List <BlockageData> obstacles = new List <BlockageData>(obstaclePolygons.Count);

                foreach (Polygon poly in obstaclePolygons)
                {
                    Polygon convolvedPoly = null;
                    try
                    {
                        convolvedPoly = Polygon.ConvexMinkowskiConvolution(tahoePoly, poly);
                    }
                    catch (Exception)
                    {
                        // minkowski convolution failed, just expand that stuff with the gaheezy inflate method
                        convolvedPoly = poly.Inflate(expandDist);
                    }

                    // add the entry to the obstacle collection
                    BlockageData data = new BlockageData(convolvedPoly);
                    obstacles.Add(data);
                }

                // shrink in the lanes by a half tahoe width
                leftBound  = leftBound.ShiftLateral(-TahoeParams.T / 2.0);
                rightBound = rightBound.ShiftLateral(-TahoeParams.T / 2.0);

                Queue <BlockageData> testQueue = new Queue <BlockageData>();

                foreach (BlockageData obs in obstacles)
                {
                    if (obs.convolvedPolygon.DoesIntersect(leftBound))
                    {
                        // check if this hits the right bound
                        if (obs.convolvedPolygon.DoesIntersect(rightBound))
                        {
                            // this extends across the entire lane, the segment is blocked
                            return(true);
                        }
                        else
                        {
                            testQueue.Enqueue(obs);
                            obs.searchMark = true;
                        }
                    }
                }

                while (testQueue.Count > 0)
                {
                    BlockageData obs = testQueue.Dequeue();

                    foreach (BlockageData neighbor in obstacles)
                    {
                        if (!neighbor.searchMark && Polygon.TestConvexIntersection(obs.convolvedPolygon, neighbor.convolvedPolygon))
                        {
                            if (neighbor.convolvedPolygon.DoesIntersect(rightBound))
                            {
                                return(true);
                            }

                            testQueue.Enqueue(neighbor);
                            neighbor.searchMark = true;
                        }
                    }
                }

                return(false);
            }
            catch (Exception) { }

            return(false);
        }
Example #15
0
        private ILaneModel GetLaneModel(LocalLaneModel laneModel, LinePath rndfPath, double rndfPathWidth, CarTimestamp rndfPathTimestamp)
        {
            // check the lane model probability
            if (laneModel.Probability < lane_probability_reject_threshold)
            {
                // we're rejecting this, just return a path lane model
                return(new PathLaneModel(rndfPathTimestamp, rndfPath, rndfPathWidth));
            }

            // project the lane model's path into the rndf path's timestamp
            RelativeTransform relTransform  = Services.RelativePose.GetTransform(localRoadModel.Timestamp, rndfPathTimestamp);
            LinePath          laneModelPath = laneModel.LanePath.Transform(relTransform);

            // iterate through the waypoints in the RNDF path and project onto the lane model
            // the first one that is over the threshold, we consider the waypoint before as a potential ending point
            LinePath.PointOnPath laneModelDeviationEndPoint = new LinePath.PointOnPath();
            // flag indicating if any of the waypoint tests failed because of the devation was too high
            bool anyDeviationTooHigh = false;
            // number of waypoints accepted
            int numWaypointsAccepted = 0;

            // get the vehicle's position on the rndf path
            LinePath.PointOnPath rndfZeroPoint = rndfPath.ZeroPoint;

            // get the vehicle's position on the lane model
            LinePath.PointOnPath laneModelZeroPoint = laneModelPath.ZeroPoint;

            // get the last point we want to consider on the lane model
            LinePath.PointOnPath laneModelFarthestPoint = laneModelPath.AdvancePoint(laneModelZeroPoint, lane_model_max_dist);

            // start walking forward through the waypoints on the rndf path
            // this loop will implicitly exit when we're past the end of the lane model as the waypoints
            //		will stop being close to the lane model (GetClosestPoint returns the end point if we're past the
            //    end of the path)
            for (int i = rndfZeroPoint.Index + 1; i < rndfPath.Count; i++)
            {
                // get the waypoint
                Coordinates rndfWaypoint = rndfPath[i];

                // get the closest point on the lane model
                LinePath.PointOnPath laneModelClosestPoint = laneModelPath.GetClosestPoint(rndfWaypoint);

                // compute the distance between the two
                double deviation = rndfWaypoint.DistanceTo(laneModelClosestPoint.Location);

                // if this is above the deviation threshold, leave the loop
                if (deviation > lane_deviation_reject_threshold || laneModelClosestPoint > laneModelFarthestPoint)
                {
                    // if we're at the end of the lane model path, we don't want to consider this a rejection
                    if (laneModelClosestPoint < laneModelFarthestPoint)
                    {
                        // mark that at least on deviation was too high
                        anyDeviationTooHigh = true;
                    }
                    break;
                }

                // increment the number of waypoint accepted
                numWaypointsAccepted++;

                // update the end point of where we're valid as the local road model was OK up to this point
                laneModelDeviationEndPoint = laneModelClosestPoint;
            }

            // go through and figure out how far out the variance is within tolerance
            LinePath.PointOnPath laneModelVarianceEndPoint = new LinePath.PointOnPath();
            // walk forward from this point until the end of the lane mode path
            for (int i = laneModelZeroPoint.Index + 1; i < laneModelPath.Count; i++)
            {
                // check if we're within the variance toleration
                if (laneModel.LaneYVariance[i] <= y_var_reject_threshold)
                {
                    // we are, update the point on path
                    laneModelVarianceEndPoint = laneModelPath.GetPointOnPath(i);
                }
                else
                {
                    // we are out of tolerance, break out of the loop
                    break;
                }
            }

            // now figure out everything out
            // determine waypoint rejection status
            WaypointRejectionResult waypointRejectionResult;

            if (laneModelDeviationEndPoint.Valid)
            {
                // if the point is valid, that we had at least one waypoint that was ok
                // check if any waypoints were rejected
                if (anyDeviationTooHigh)
                {
                    // some waypoint was ok, so we know that at least one waypoint was accepted
                    waypointRejectionResult = WaypointRejectionResult.SomeWaypointsAccepted;
                }
                else
                {
                    // no waypoint triggered a rejection, but at least one was good
                    waypointRejectionResult = WaypointRejectionResult.AllWaypointsAccepted;
                }
            }
            else
            {
                // the point is not valid, so we either had no waypoints or we had all rejections
                if (anyDeviationTooHigh)
                {
                    // the first waypoint was rejected, so all are rejected
                    waypointRejectionResult = WaypointRejectionResult.AllWaypointsRejected;
                }
                else
                {
                    // the first waypoint (if any) was past the end of the lane model
                    waypointRejectionResult = WaypointRejectionResult.NoWaypoints;
                }
            }

            // criteria for determining if this path is valid:
            //	- if some or all waypoints were accepted, than this is probably a good path
            //		- if some of the waypoints were accepted, we go no farther than the last waypoint that was accepted
            //	- if there were no waypoints, this is a potentially dangerous situation since we can't reject
            //    or confirm the local road model. for now, we'll assume that it is correct but this may need to change
            //    if we start handling intersections in this framework
            //  - if all waypoints were rejected, than we don't use the local road model
            //  - go no farther than the laneModelVarianceEndPoint, which is the last point where the y-variance of
            //    the lane model was in tolerance

            // now build out the lane model
            ILaneModel finalLaneModel;

            // check if we rejected all waypoints or no lane model points satisified the variance threshold
            if (waypointRejectionResult == WaypointRejectionResult.AllWaypointsRejected || !laneModelVarianceEndPoint.Valid)
            {
                // want to just use the path lane model
                finalLaneModel = new PathLaneModel(rndfPathTimestamp, rndfPath, rndfPathWidth);
            }
            else
            {
                // we'll use the lane model
                // need to build up the center line as well as left and right bounds

                // to build up the center line, use the lane model as far as we feel comfortable (limited by either variance
                // or by rejections) and then use the rndf lane after that.
                LinePath centerLine = new LinePath();

                // figure out the max distance
                // if there were no waypoints, set the laneModelDeviationEndPoint to the end of the lane model
                if (waypointRejectionResult == WaypointRejectionResult.NoWaypoints)
                {
                    laneModelDeviationEndPoint = laneModelFarthestPoint;
                }

                // figure out the closer of the end points
                LinePath.PointOnPath laneModelEndPoint = (laneModelDeviationEndPoint < laneModelVarianceEndPoint) ? laneModelDeviationEndPoint : laneModelVarianceEndPoint;
                bool endAtWaypoint = laneModelEndPoint == laneModelDeviationEndPoint;

                // add the lane model to the center line
                centerLine.AddRange(laneModelPath.GetSubpathEnumerator(laneModelZeroPoint, laneModelEndPoint));

                // create a list to hold the width expansion values
                List <double> widthValue = new List <double>();

                // make the width expansion values the width of the path plus the 1-sigma values
                for (int i = laneModelZeroPoint.Index; i < laneModelZeroPoint.Index + centerLine.Count; i++)
                {
                    widthValue.Add(laneModel.Width / 2.0 + Math.Sqrt(laneModel.LaneYVariance[i]));
                }

                // now figure out how to add the rndf path
                // get the projection of the lane model end point on the rndf path
                LinePath.PointOnPath rndfPathStartPoint = rndfPath.GetClosestPoint(laneModelEndPoint.Location);

                // if the closest point is past the end of rndf path, then we don't want to tack anything on
                if (rndfPathStartPoint != rndfPath.EndPoint)
                {
                    // get the last segment of the new center line
                    Coordinates centerLineEndSegmentVec = centerLine.EndSegment.UnitVector;
                    // get the last point of the new center line
                    Coordinates laneModelEndLoc = laneModelEndPoint.Location;

                    // now figure out the distance to the next waypoint
                    LinePath.PointOnPath rndfNextPoint = new LinePath.PointOnPath();

                    // figure out if we're ending at a waypoint or not
                    if (endAtWaypoint)
                    {
                        rndfNextPoint = rndfPath.GetPointOnPath(rndfPathStartPoint.Index + 1);

                        // if the distance from the start point to the next point is less than rndf_dist_min, then
                        // use the waypont after
                        double dist = rndfPath.DistanceBetween(rndfPathStartPoint, rndfNextPoint);

                        if (dist < rndf_dist_min)
                        {
                            if (rndfPathStartPoint.Index < rndfPath.Count - 2)
                            {
                                rndfNextPoint = rndfPath.GetPointOnPath(rndfPathStartPoint.Index + 2);
                            }
                            else if (rndfPath.DistanceBetween(rndfPathStartPoint, rndfPath.EndPoint) < rndf_dist_min)
                            {
                                rndfNextPoint = LinePath.PointOnPath.Invalid;
                            }
                            else
                            {
                                rndfNextPoint = rndfPath.AdvancePoint(rndfPathStartPoint, rndf_dist_min * 2);
                            }
                        }
                    }
                    else
                    {
                        // track the last angle we had
                        double lastAngle = double.NaN;

                        // walk down the rndf path until we find a valid point
                        for (double dist = rndf_dist_min; dist <= rndf_dist_max; dist += rndf_dist_step)
                        {
                            // advance from the start point by dist
                            double distTemp = dist;
                            rndfNextPoint = rndfPath.AdvancePoint(rndfPathStartPoint, ref distTemp);

                            // if the distTemp is > 0, then we're past the end of the path
                            if (distTemp > 0)
                            {
                                // if we're immediately past the end, we don't want to tack anything on
                                if (dist == rndf_dist_min)
                                {
                                    rndfNextPoint = LinePath.PointOnPath.Invalid;
                                }

                                break;
                            }

                            // check the angle made by the last segment of center line and the segment
                            // formed between the end point of the center line and this new point
                            double angle = Math.Acos(centerLineEndSegmentVec.Dot((rndfNextPoint.Location - laneModelEndLoc).Normalize()));

                            // check if the angle satisfies the threshold or we're increasing the angle
                            if (Math.Abs(angle) < rndf_angle_threshold || (!double.IsNaN(lastAngle) && angle > lastAngle))
                            {
                                // break out of the loop, we're done searching
                                break;
                            }

                            lastAngle = angle;
                        }
                    }

                    // tack on the rndf starting at next point going to the end
                    if (rndfNextPoint.Valid)
                    {
                        LinePath subPath = rndfPath.SubPath(rndfNextPoint, rndfPath.EndPoint);
                        centerLine.AddRange(subPath);

                        // insert the lane model end point into the sub path
                        subPath.Insert(0, laneModelEndLoc);

                        // get the angles
                        List <Pair <int, double> > angles = subPath.GetIntersectionAngles(0, subPath.Count - 1);

                        // add the width of the path inflated by the angles
                        for (int i = 0; i < angles.Count; i++)
                        {
                            // calculate the width expansion factor
                            // 90 deg, 3x width
                            // 45 deg, 1.5x width
                            // 0 deg, 1x width
                            double widthFactor = Math.Pow(angles[i].Right / (Math.PI / 2.0), 2) * 2 + 1;

                            // add the width value
                            widthValue.Add(widthFactor * laneModel.Width / 2);
                        }

                        // add the final width
                        widthValue.Add(laneModel.Width / 2);
                    }

                    // set the rndf path start point to be the point we used
                    rndfPathStartPoint = rndfNextPoint;
                }

                // for now, calculate the left and right bounds the same way we do for the path lane model
                // TODO: figure out if we want to do this more intelligently using knowledge of the lane model uncertainty
                LinePath leftBound = centerLine.ShiftLateral(widthValue.ToArray());
                // get the next shifts
                for (int i = 0; i < widthValue.Count; i++)
                {
                    widthValue[i] = -widthValue[i];
                }
                LinePath rightBound = centerLine.ShiftLateral(widthValue.ToArray());

                // build the final lane model
                finalLaneModel = new CombinedLaneModel(centerLine, leftBound, rightBound, laneModel.Width, rndfPathTimestamp);
            }

            SendLaneModelToUI(finalLaneModel, rndfPathTimestamp);

            // output the fit result
            return(finalLaneModel);
        }
        /// <summary>
        /// Get partition of startup chute we might be upon
        /// </summary>
        /// <param name="vehicleState"></param>
        /// <returns></returns>
        public ArbiterLanePartition GetStartupChute(VehicleState vehicleState)
        {
            // current road network
            ArbiterRoadNetwork arn = CoreCommon.RoadNetwork;

            // get startup chutes
            List <ArbiterLanePartition> startupChutes = new List <ArbiterLanePartition>();

            foreach (ArbiterSegment asg in arn.ArbiterSegments.Values)
            {
                foreach (ArbiterLane al in asg.Lanes.Values)
                {
                    foreach (ArbiterLanePartition alp in al.Partitions)
                    {
                        if (alp.Type == PartitionType.Startup)
                        {
                            startupChutes.Add(alp);
                        }
                    }
                }
            }

            // figure out which startup chute we are in
            foreach (ArbiterLanePartition alp in startupChutes)
            {
                // check if within 40m of it
                if (vehicleState.Front.DistanceTo(alp.Initial.Position) < 40.0)
                {
                    // check orientation relative to lane
                    Coordinates laneVector = alp.Vector().Normalize();

                    // get our heading
                    Coordinates ourHeading = vehicleState.Heading.Normalize();

                    // check dist to each other to make sure forwards
                    if (laneVector.DistanceTo(ourHeading) < Math.Sqrt(2.0))
                    {
                        // figure out extension
                        Coordinates backC = alp.Initial.Position - alp.Vector().Normalize(40.0);

                        // generate new line path
                        LinePath           lp   = new LinePath(new Coordinates[] { backC, alp.Final.Position });
                        LinePath           lpL  = lp.ShiftLateral(alp.Lane.Width / 2.0);
                        LinePath           lpR  = lp.ShiftLateral(-alp.Lane.Width / 2.0);
                        List <Coordinates> poly = new List <Coordinates>();
                        poly.AddRange(lpL);
                        poly.AddRange(lpR);
                        Polygon chutePoly = Polygon.GrahamScan(poly);

                        // check if we're inside the chute
                        if (chutePoly.IsInside(vehicleState.Front))
                        {
                            // return the chute
                            return(alp);
                        }
                    }
                }
            }

            // fallout
            return(null);
        }
        public void GenerateInterconnectPolygon(ArbiterInterconnect ai)
        {
            List<Coordinates> polyPoints = new List<Coordinates>();
            try
            {
                // width
                double width = 3.0;
                if (ai.InitialGeneric is ArbiterWaypoint)
                {
                    ArbiterWaypoint aw = (ArbiterWaypoint)ai.InitialGeneric;
                    width = width < aw.Lane.Width ? aw.Lane.Width : width;
                }
                if (ai.FinalGeneric is ArbiterWaypoint)
                {
                    ArbiterWaypoint aw = (ArbiterWaypoint)ai.FinalGeneric;
                    width = width < aw.Lane.Width ? aw.Lane.Width : width;
                }

                if (ai.TurnDirection == ArbiterTurnDirection.UTurn ||
                    ai.TurnDirection == ArbiterTurnDirection.Straight ||
                    !(ai.InitialGeneric is ArbiterWaypoint) ||
                    !(ai.FinalGeneric is ArbiterWaypoint))
                {
                    LinePath lp = ai.InterconnectPath.ShiftLateral(width / 2.0);
                    LinePath rp = ai.InterconnectPath.ShiftLateral(-width / 2.0);
                    polyPoints.AddRange(lp);
                    polyPoints.AddRange(rp);
                    ai.TurnPolygon = Polygon.GrahamScan(polyPoints);

                    if (ai.TurnDirection == ArbiterTurnDirection.UTurn)
                    {
                        List<Coordinates> updatedPts = new List<Coordinates>();
                        LinePath interTmp = ai.InterconnectPath.Clone();
                        Coordinates pathVec = ai.FinalGeneric.Position - ai.InitialGeneric.Position;
                        interTmp[1] = interTmp[1] + pathVec.Normalize(width / 2.0);
                        interTmp[0] = interTmp[0] - pathVec.Normalize(width / 2.0);
                        lp = interTmp.ShiftLateral(TahoeParams.VL);
                        rp = interTmp.ShiftLateral(-TahoeParams.VL);
                        updatedPts.AddRange(lp);
                        updatedPts.AddRange(rp);
                        ai.TurnPolygon = Polygon.GrahamScan(updatedPts);
                    }
                }
                else
                {
                    // polygon points
                    List<Coordinates> interPoints = new List<Coordinates>();

                    // waypoint
                    ArbiterWaypoint awI = (ArbiterWaypoint)ai.InitialGeneric;
                    ArbiterWaypoint awF = (ArbiterWaypoint)ai.FinalGeneric;

                    // left and right path
                    LinePath leftPath = new LinePath();
                    LinePath rightPath = new LinePath();

                    // some initial points
                    LinePath initialPath = new LinePath(new Coordinates[] { awI.PreviousPartition.Initial.Position, awI.Position });
                    LinePath il = initialPath.ShiftLateral(width / 2.0);
                    LinePath ir = initialPath.ShiftLateral(-width / 2.0);
                    leftPath.Add(il[1]);
                    rightPath.Add(ir[1]);

                    // some final points
                    LinePath finalPath = new LinePath(new Coordinates[] { awF.Position, awF.NextPartition.Final.Position });
                    LinePath fl = finalPath.ShiftLateral(width / 2.0);
                    LinePath fr = finalPath.ShiftLateral(-width / 2.0);
                    leftPath.Add(fl[0]);
                    rightPath.Add(fr[0]);

                    // initial and final paths
                    Line iPath = new Line(awI.PreviousPartition.Initial.Position, awI.Position);
                    Line fPath = new Line(awF.Position, awF.NextPartition.Final.Position);

                    // get where the paths intersect and vector to normal path
                    Coordinates c;
                    iPath.Intersect(fPath, out c);
                    Coordinates vector = ai.InterconnectPath.GetClosestPoint(c).Location - c;
                    Coordinates center = c + vector.Normalize((vector.Length / 2.0));

                    // get width expansion
                    Coordinates iVec = awI.PreviousPartition != null ? awI.PreviousPartition.Vector().Normalize(1.0) : awI.NextPartition.Vector().Normalize(1.0);
                    double iRot = -iVec.ArcTan;
                    Coordinates fVec = awF.NextPartition != null ? awF.NextPartition.Vector().Normalize(1.0) : awF.PreviousPartition.Vector().Normalize(1.0);
                    fVec = fVec.Rotate(iRot);
                    double fDeg = fVec.ToDegrees();
                    double arcTan = Math.Atan2(fVec.Y, fVec.X) * 180.0 / Math.PI;
                    double centerWidth = width + width * 2.0 * Math.Abs(arcTan) / 90.0;

                    // get inner point (small scale)
                    Coordinates innerPoint = center + vector.Normalize(centerWidth / 4.0);

                    // get outer
                    Coordinates outerPoint = center - vector.Normalize(centerWidth / 2.0);

                    if (ai.TurnDirection == ArbiterTurnDirection.Right)
                    {
                        rightPath.Insert(1, innerPoint);
                        ai.InnerCoordinates = rightPath;
                        leftPath.Reverse();
                        leftPath.Insert(1, outerPoint);
                        Polygon p = new Polygon(leftPath.ToArray());
                        p.AddRange(rightPath.ToArray());
                        ai.TurnPolygon = p;
                    }
                    else
                    {
                        leftPath.Insert(1, innerPoint);
                        ai.InnerCoordinates = leftPath;
                        rightPath.Reverse();
                        rightPath.Insert(1, outerPoint);
                        Polygon p = new Polygon(leftPath.ToArray());
                        p.AddRange(rightPath.ToArray());
                        ai.TurnPolygon = p;
                    }
                }
            }
            catch (Exception e)
            {
                Console.WriteLine("error generating turn polygon: " + ai.ToString());
                ai.TurnPolygon = ai.DefaultPoly();
            }
        }
        /// <summary>
        /// Get partition of startup chute we might be upon
        /// </summary>
        /// <param name="vehicleState"></param>
        /// <returns></returns>
        public ArbiterLanePartition GetStartupChute(VehicleState vehicleState)
        {
            // current road network
            ArbiterRoadNetwork arn = CoreCommon.RoadNetwork;

            // get startup chutes
            List<ArbiterLanePartition> startupChutes = new List<ArbiterLanePartition>();
            foreach (ArbiterSegment asg in arn.ArbiterSegments.Values)
            {
                foreach (ArbiterLane al in asg.Lanes.Values)
                {
                    foreach (ArbiterLanePartition alp in al.Partitions)
                    {
                        if (alp.Type == PartitionType.Startup)
                            startupChutes.Add(alp);
                    }
                }
            }

            // figure out which startup chute we are in
            foreach (ArbiterLanePartition alp in startupChutes)
            {
                // check if within 40m of it
                if(vehicleState.Front.DistanceTo(alp.Initial.Position) < 40.0)
                {
                    // check orientation relative to lane
                    Coordinates laneVector = alp.Vector().Normalize();

                    // get our heading
                    Coordinates ourHeading = vehicleState.Heading.Normalize();

                    // check dist to each other to make sure forwards
                    if (laneVector.DistanceTo(ourHeading) < Math.Sqrt(2.0))
                    {
                        // figure out extension
                        Coordinates backC = alp.Initial.Position - alp.Vector().Normalize(40.0);

                        // generate new line path
                        LinePath lp = new LinePath(new Coordinates[] { backC, alp.Final.Position });
                        LinePath lpL = lp.ShiftLateral(alp.Lane.Width / 2.0);
                        LinePath lpR = lp.ShiftLateral(-alp.Lane.Width / 2.0);
                        List<Coordinates> poly = new List<Coordinates>();
                        poly.AddRange(lpL);
                        poly.AddRange(lpR);
                        Polygon chutePoly = Polygon.GrahamScan(poly);

                        // check if we're inside the chute
                        if (chutePoly.IsInside(vehicleState.Front))
                        {
                            // return the chute
                            return alp;
                        }
                    }
                }
            }

            // fallout
            return null;
        }
        /// <summary>
        /// Plans the next maneuver
        /// </summary>
        /// <param name="roads"></param>
        /// <param name="mission"></param>
        /// <param name="vehicleState"></param>
        /// <param name="CoreCommon.CorePlanningState"></param>
        /// <param name="observedVehicles"></param>
        /// <param name="observedObstacles"></param>
        /// <param name="coreState"></param>
        /// <param name="carMode"></param>
        /// <returns></returns>
        public Maneuver Plan(VehicleState vehicleState, double vehicleSpeed,
            SceneEstimatorTrackedClusterCollection observedVehicles, SceneEstimatorUntrackedClusterCollection observedObstacles,
            CarMode carMode, INavigableNode goal)
        {
            // set blockages
            List<ITacticalBlockage> blockages = this.blockageHandler.DetermineBlockages(CoreCommon.CorePlanningState);

            #region Travel State

            if (CoreCommon.CorePlanningState is TravelState)
            {
                #region Stay in Lane State

                if (CoreCommon.CorePlanningState is StayInLaneState)
                {
                    // get lane state
                    StayInLaneState sils = (StayInLaneState)CoreCommon.CorePlanningState;

                    #region Blockages

                    // check blockages
                    if (blockages != null && blockages.Count > 0 && blockages[0] is LaneBlockage)
                    {
                        // create the blockage state
                        EncounteredBlockageState ebs = new EncounteredBlockageState(blockages[0], CoreCommon.CorePlanningState);

                        // check not from a dynamicly moving vehicle
                        if (blockages[0].BlockageReport.BlockageType != BlockageType.Dynamic)
                        {
                            // go to a blockage handling tactical
                            return new Maneuver(new HoldBrakeBehavior(), ebs, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                        else
                            ArbiterOutput.Output("Lane blockage reported for moving vehicle, ignoring");
                    }

                    #endregion

                    // update the total time ignorable have been seen
                    sils.UpdateIgnoreList();

                    // nav plan to find poi
                    RoadPlan rp = navigation.PlanNavigableArea(sils.Lane, vehicleState.Position, goal, sils.WaypointsToIgnore);

                    // check for unreachable route
                    if (rp.BestPlan.laneWaypointOfInterest.BestRoute != null &&
                        rp.BestPlan.laneWaypointOfInterest.BestRoute.Count == 0 &&
                        rp.BestPlan.laneWaypointOfInterest.RouteTime >= Double.MaxValue - 1.0)
                    {
                        ArbiterOutput.Output("Removed Unreachable Checkpoint: " + CoreCommon.Mission.MissionCheckpoints.Peek().CheckpointNumber.ToString());
                        CoreCommon.Mission.MissionCheckpoints.Dequeue();
                        return new Maneuver(new NullBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                    else if (rp.BestPlan.laneWaypointOfInterest.TimeCostToPoint >= Double.MaxValue - 1.0)
                    {
                        ArbiterOutput.Output("Best Lane Waypoint of Interest is END OF LANE WITH NO INTERCONNECTS, LEADING NOWHERE");
                        ArbiterOutput.Output("Removed Unreachable Checkpoint: " + CoreCommon.Mission.MissionCheckpoints.Peek().CheckpointNumber.ToString());
                        CoreCommon.Mission.MissionCheckpoints.Dequeue();
                        return new Maneuver(new NullBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }

                    #region Check Supra Lane Availability

                    // if the poi is at the end of this lane, is not stop, leads to another lane, and has no overlapping lanes
                    // or if the poi's best exit is an exit in this lane, is not a stop, has no overlapping lanes and leads to another lane
                    // create supralane

                    // check if navigation is corrent in saying we want to continue on the current lane and we're far enough along the lane, 30m for now
                    if(rp.BestPlan.Lane.Equals(sils.Lane.LaneId))
                    {
                        // get navigation poi
                        DownstreamPointOfInterest dpoi = rp.BestPlan.laneWaypointOfInterest;

                        // check that the poi is not stop and is not the current checkpoint
                        if(!dpoi.PointOfInterest.IsStop && !(CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId.Equals(dpoi.PointOfInterest.WaypointId)))
                        {
                            // get the best exit or the poi
                            ArbiterInterconnect ai = dpoi.BestExit;

                            // check if exit goes into a lane and not a uturn
                            if(ai != null && ai.FinalGeneric is ArbiterWaypoint && ai.TurnDirection != ArbiterTurnDirection.UTurn)
                            {
                                // final lane or navigation poi interconnect
                                ArbiterLane al = ((ArbiterWaypoint)ai.FinalGeneric).Lane;

                                // check not same lane
                                if (!al.Equals(sils.Lane))
                                {
                                    // check if enough room to start
                                    bool enoughRoom = !sils.Lane.Equals(al) || sils.Lane.LanePath(sils.Lane.WaypointList[0].Position, vehicleState.Front).PathLength > 30;
                                    if (enoughRoom)
                                    {
                                        // try to get intersection associated with the exit
                                        ArbiterIntersection aInter = CoreCommon.RoadNetwork.IntersectionLookup.ContainsKey(dpoi.PointOfInterest.WaypointId) ?
                                            CoreCommon.RoadNetwork.IntersectionLookup[dpoi.PointOfInterest.WaypointId] : null;

                                        // check no intersection or no overlapping lanes
                                        if (aInter == null || !aInter.PriorityLanes.ContainsKey(ai) || aInter.PriorityLanes[ai].Count == 0)
                                        {
                                            // create the supra lane
                                            SupraLane sl = new SupraLane(sils.Lane, ai, al);

                                            // switch to the supra lane state
                                            StayInSupraLaneState sisls = new StayInSupraLaneState(sl, CoreCommon.CorePlanningState);
                                            sisls.UpdateState(vehicleState.Front);

                                            // set
                                            return new Maneuver(new NullBehavior(), sisls, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                                        }
                                    }
                                }
                            }
                        }
                    }

                    #endregion

                    // plan final tactical maneuver
                    Maneuver final = tactical.Plan(CoreCommon.CorePlanningState, rp, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                    // return final maneuver
                    return final;
                }

                #endregion

                #region Stay in Supra Lane State

                else if (CoreCommon.CorePlanningState is StayInSupraLaneState)
                {
                    // state
                    StayInSupraLaneState sisls = (StayInSupraLaneState)CoreCommon.CorePlanningState;

                    #region Blockages

                    // check blockages
                    if (blockages != null && blockages.Count > 0 && blockages[0] is LaneBlockage)
                    {
                        // create the blockage state
                        EncounteredBlockageState ebs = new EncounteredBlockageState(blockages[0], CoreCommon.CorePlanningState);

                        // check not from a dynamicly moving vehicle
                        if (blockages[0].BlockageReport.BlockageType != BlockageType.Dynamic)
                        {
                            // go to a blockage handling tactical
                            return new Maneuver(new HoldBrakeBehavior(), ebs, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                        else
                            ArbiterOutput.Output("Lane blockage reported for moving vehicle, ignoring");
                    }

                    #endregion

                    // check if we are in the final lane
                    if (sisls.Lane.ClosestComponent(vehicleState.Position) == SLComponentType.Final)
                    {
                        // go to stay in lane
                        return new Maneuver(new NullBehavior(), new StayInLaneState(sisls.Lane.Final, sisls), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }

                    // update ignorable
                    sisls.UpdateIgnoreList();

                    // nav plan to find points
                    RoadPlan rp = navigation.PlanNavigableArea(sisls.Lane, vehicleState.Position, goal, sisls.WaypointsToIgnore);

                    // check for unreachable route
                    if (rp.BestPlan.laneWaypointOfInterest.BestRoute != null &&
                        rp.BestPlan.laneWaypointOfInterest.BestRoute.Count == 0 &&
                        rp.BestPlan.laneWaypointOfInterest.RouteTime >= Double.MaxValue - 1.0)
                    {
                        ArbiterOutput.Output("Removed Unreachable Checkpoint: " + CoreCommon.Mission.MissionCheckpoints.Peek().CheckpointNumber.ToString());
                        CoreCommon.Mission.MissionCheckpoints.Dequeue();
                        return new Maneuver(new NullBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }

                    // plan
                    Maneuver final = tactical.Plan(CoreCommon.CorePlanningState, rp, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                    // update current state
                    sisls.UpdateState(vehicleState.Front);

                    // return final maneuver
                    return final;
                }

                #endregion

                #region Stopping At Stop State

                else if (CoreCommon.CorePlanningState is StoppingAtStopState)
                {
                    // get state
                    StoppingAtStopState sass = (StoppingAtStopState)CoreCommon.CorePlanningState;

                    // check to see if we're stopped
                    // check if in other lane
                    if (CoreCommon.Communications.HasCompleted((new StayInLaneBehavior(null, null, null)).GetType()))
                    {
                        // update intersection monitor
                        if (CoreCommon.RoadNetwork.IntersectionLookup.ContainsKey(sass.waypoint.AreaSubtypeWaypointId))
                        {
                            // nav plan
                            IntersectionPlan ip = navigation.PlanIntersection(sass.waypoint, goal);

                            // update intersection monitor
                            this.tactical.Update(observedVehicles, vehicleState);
                            IntersectionTactical.IntersectionMonitor = new IntersectionMonitor(
                                sass.waypoint,
                                CoreCommon.RoadNetwork.IntersectionLookup[sass.waypoint.AreaSubtypeWaypointId],
                                vehicleState, ip.BestOption);
                        }
                        else
                        {
                            IntersectionTactical.IntersectionMonitor = null;
                        }

                        // check if we've hit goal if stop is cp
                        if (sass.waypoint.WaypointId.Equals(CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId))
                        {
                            ArbiterOutput.Output("Stopped at current goal: " + CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId.ToString() + ", Removing");
                            CoreCommon.Mission.MissionCheckpoints.Dequeue();

                            if (CoreCommon.Mission.MissionCheckpoints.Count == 0)
                            {
                                return new Maneuver(new HoldBrakeBehavior(), new NoGoalsLeftState(), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                            }
                        }

                        // move to the intersection
                        IState next = new WaitingAtIntersectionExitState(sass.waypoint, sass.turnDirection, new IntersectionDescription(), sass.desiredExit);
                        Behavior b = new HoldBrakeBehavior();
                        return new Maneuver(b, next, sass.DefaultStateDecorators, vehicleState.Timestamp);
                    }
                    else
                    {
                        // otherwise update the stop parameters
                        Behavior b = sass.Resume(vehicleState, vehicleSpeed);
                        return new Maneuver(b, CoreCommon.CorePlanningState, sass.DefaultStateDecorators, vehicleState.Timestamp);
                    }
                }

                #endregion

                #region Change Lanes State

                else if (CoreCommon.CorePlanningState is ChangeLanesState)
                {
                    // get state
                    ChangeLanesState cls = (ChangeLanesState)CoreCommon.CorePlanningState;

                    #region Blockages

                    // check blockages
                    if (blockages != null && blockages.Count > 0 && blockages[0] is LaneChangeBlockage)
                    {
                        // create the blockage state
                        EncounteredBlockageState ebs = new EncounteredBlockageState(blockages[0], CoreCommon.CorePlanningState);

                        // check not from a dynamicly moving vehicle
                        if (blockages[0].BlockageReport.BlockageType != BlockageType.Dynamic)
                        {
                            // go to a blockage handling tactical
                            return new Maneuver(new NullBehavior(), ebs, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                        else
                            ArbiterOutput.Output("Lane Change blockage reported for moving vehicle, ignoring");
                    }

                    #endregion

                    // get a good lane
                    ArbiterLane goodLane = null;
                    if(!cls.Parameters.InitialOncoming)
                        goodLane = cls.Parameters.Initial;
                    else if(!cls.Parameters.TargetOncoming)
                        goodLane = cls.Parameters.Target;
                    else
                        throw new Exception("not going from or to good lane");

                    // nav plan to find poi
                    #warning make goal better if there is none come to stop
                    RoadPlan rp = navigation.PlanNavigableArea(goodLane, vehicleState.Front,
                        CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId], new List<ArbiterWaypoint>());

                    // check current behavior type
                    bool done = CoreCommon.Communications.HasCompleted((new ChangeLaneBehavior(null, null, false, 0, null, null)).GetType());

                    if (done)
                    {
                        if (cls.Parameters.TargetOncoming)
                            return new Maneuver(
                                new StayInLaneBehavior(cls.Parameters.Target.LaneId,
                                    new ScalarSpeedCommand(cls.Parameters.Parameters.RecommendedSpeed),
                                    cls.Parameters.Parameters.VehiclesToIgnore,
                                    cls.Parameters.Target.ReversePath,
                                    cls.Parameters.Target.Width,
                                    cls.Parameters.Target.NumberOfLanesRight(vehicleState.Front, !cls.Parameters.InitialOncoming),
                                    cls.Parameters.Target.NumberOfLanesLeft(vehicleState.Front, !cls.Parameters.InitialOncoming)),
                                new OpposingLanesState(cls.Parameters.Target, true, cls, vehicleState), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        else
                            return new Maneuver(
                                new StayInLaneBehavior(cls.Parameters.Target.LaneId,
                                    new ScalarSpeedCommand(cls.Parameters.Parameters.RecommendedSpeed),
                                    cls.Parameters.Parameters.VehiclesToIgnore,
                                    cls.Parameters.Target.LanePath(),
                                    cls.Parameters.Target.Width,
                                    cls.Parameters.Target.NumberOfLanesLeft(vehicleState.Front, !cls.Parameters.InitialOncoming),
                                    cls.Parameters.Target.NumberOfLanesRight(vehicleState.Front, !cls.Parameters.InitialOncoming)),
                                new StayInLaneState(cls.Parameters.Target, CoreCommon.CorePlanningState), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                    else
                    {
                        return tactical.Plan(cls, rp, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);
                    }
                }

                #endregion

                #region Opposing Lanes State

                else if (CoreCommon.CorePlanningState is OpposingLanesState)
                {
                    // get state
                    OpposingLanesState ols = (OpposingLanesState)CoreCommon.CorePlanningState;
                    ols.SetClosestGood(vehicleState);

                    #region Blockages

                    // check blockages
                    if (blockages != null && blockages.Count > 0 && blockages[0] is OpposingLaneBlockage)
                    {
                        // create the blockage state
                        EncounteredBlockageState ebs = new EncounteredBlockageState(blockages[0], CoreCommon.CorePlanningState);

                        // check not from a dynamicly moving vehicle
                        if (blockages[0].BlockageReport.BlockageType != BlockageType.Dynamic)
                        {
                            // go to a blockage handling tactical
                            return new Maneuver(new HoldBrakeBehavior(), ebs, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                        else
                            ArbiterOutput.Output("Opposing Lane blockage reported for moving vehicle, ignoring");
                    }

                    #endregion

                    // check closest good null
                    if (ols.ClosestGoodLane != null)
                    {
                        // nav plan to find poi
                        RoadPlan rp = navigation.PlanNavigableArea(ols.ClosestGoodLane, vehicleState.Position, goal, new List<ArbiterWaypoint>());

                        // plan final tactical maneuver
                        Maneuver final = tactical.Plan(CoreCommon.CorePlanningState, rp, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                        // return final maneuver
                        return final;
                    }
                    // otherwise need to make a uturn
                    else
                    {
                        ArbiterOutput.Output("in opposing lane with no closest good, making a uturn");
                        ArbiterLanePartition alp = ols.OpposingLane.GetClosestPartition(vehicleState.Front);
                        Coordinates c1 = vehicleState.Front + alp.Vector().Normalize(8.0);
                        Coordinates c2 = vehicleState.Front - alp.Vector().Normalize(8.0);
                        LinePath lpTmp = new LinePath(new Coordinates[] { c1, c2 });
                        List<Coordinates> pCoords = new List<Coordinates>();
                        pCoords.AddRange(lpTmp.ShiftLateral(ols.OpposingLane.Width)); //* 1.5));
                        pCoords.AddRange(lpTmp.ShiftLateral(-ols.OpposingLane.Width));// / 2.0));
                        Polygon uturnPoly = Polygon.GrahamScan(pCoords);
                        uTurnState uts = new uTurnState(ols.OpposingLane, uturnPoly, true);
                        uts.Interconnect = alp.ToInterconnect;

                        // plan final tactical maneuver
                        Maneuver final = new Maneuver(new NullBehavior(), uts, TurnDecorators.LeftTurnDecorator, vehicleState.Timestamp);

                        // return final maneuver
                        return final;
                    }
                }

                #endregion

                #region Starting up off of chute state

                else if (CoreCommon.CorePlanningState is StartupOffChuteState)
                {
                    // cast the type
                    StartupOffChuteState socs = (StartupOffChuteState)CoreCommon.CorePlanningState;

                    // check if in lane part of chute
                    if (CoreCommon.Communications.HasCompleted((new TurnBehavior(null, null, null, null, null, null)).GetType()))
                    {
                        // go to lane state
                        return new Maneuver(new NullBehavior(), new StayInLaneState(socs.Final.Lane, new Probability(0.8, 0.2), true, socs), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                    // otherwise continue
                    else
                    {
                        // simple maneuver generation
                        TurnBehavior tb = (TurnBehavior)socs.Resume(vehicleState, 1.4);

                        // add bounds to observable
                        CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(tb.LeftBound, ArbiterInformationDisplayObjectType.leftBound));
                        CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(tb.RightBound, ArbiterInformationDisplayObjectType.rightBound));

                        // final maneuver
                        return new Maneuver(tb, socs, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                }

                #endregion

                #region Unknown

                else
                {
                    // non-handled state
                    throw new ArgumentException("Unknown state", "CoreCommon.CorePlanningState");
                }

                #endregion
            }

            #endregion

            #region Intersection State

            else if (CoreCommon.CorePlanningState is IntersectionState)
            {
                #region Waiting at Intersection Exit State

                if (CoreCommon.CorePlanningState is WaitingAtIntersectionExitState)
                {
                    // get state
                    WaitingAtIntersectionExitState waies = (WaitingAtIntersectionExitState)CoreCommon.CorePlanningState;

                    // nav plan
                    IntersectionPlan ip = navigation.PlanIntersection(waies.exitWaypoint, goal);

                    // plan
                    Maneuver final = tactical.Plan(waies, ip, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                    // return final maneuver
                    return final;
                }

                #endregion

                #region Stopping At Exit State

                else if (CoreCommon.CorePlanningState is StoppingAtExitState)
                {
                    // get state
                    StoppingAtExitState saes = (StoppingAtExitState)CoreCommon.CorePlanningState;

                    // check to see if we're stopped
                    if (CoreCommon.Communications.HasCompleted((new StayInLaneBehavior(null, null, null)).GetType()))
                    {
                        // check if we've hit goal if stop is cp
                        if (saes.waypoint.WaypointId.Equals(CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId))
                        {
                            ArbiterOutput.Output("Stopped at current goal: " + CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId.ToString() + ", Removing");
                            CoreCommon.Mission.MissionCheckpoints.Dequeue();

                            if (CoreCommon.Mission.MissionCheckpoints.Count == 0)
                            {
                                return new Maneuver(new HoldBrakeBehavior(), new NoGoalsLeftState(), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                            }
                        }

                        // move to the intersection
                        IState next = new WaitingAtIntersectionExitState(saes.waypoint, saes.turnDirection, new IntersectionDescription(), saes.desiredExit);
                        Behavior b = new HoldBrakeBehavior();
                        return new Maneuver(b, next, saes.DefaultStateDecorators, vehicleState.Timestamp);
                    }
                    else
                    {
                        // nav plan
                        IntersectionPlan ip = navigation.PlanIntersection(saes.waypoint, goal);

                        // update the intersection monitor
                        if (CoreCommon.RoadNetwork.IntersectionLookup.ContainsKey(saes.waypoint.AreaSubtypeWaypointId))
                        {
                            IntersectionTactical.IntersectionMonitor = new IntersectionMonitor(
                                saes.waypoint,
                                CoreCommon.RoadNetwork.IntersectionLookup[saes.waypoint.AreaSubtypeWaypointId],
                                vehicleState, ip.BestOption);
                        }
                        else
                            IntersectionTactical.IntersectionMonitor = null;

                        // plan final tactical maneuver
                        Maneuver final = tactical.Plan(saes, ip, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                        // return final maneuver
                        return final;
                    }
                }

                #endregion

                #region Turn State

                else if (CoreCommon.CorePlanningState is TurnState)
                {
                    // get state
                    TurnState ts = (TurnState)CoreCommon.CorePlanningState;

                    // check if in other lane
                    if (CoreCommon.Communications.HasCompleted((new TurnBehavior(null, null, null, null, null, null)).GetType()))
                    {
                        if (ts.Interconnect.FinalGeneric is ArbiterWaypoint)
                        {
                            // get final wp, and if next cp, remove
                            ArbiterWaypoint final = (ArbiterWaypoint)ts.Interconnect.FinalGeneric;
                            if (CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId.Equals(final.AreaSubtypeWaypointId))
                                CoreCommon.Mission.MissionCheckpoints.Dequeue();

                            // stay in target lane
                            IState nextState = new StayInLaneState(ts.TargetLane, new Probability(0.8, 0.2), true, CoreCommon.CorePlanningState);
                            Behavior b = new NullBehavior();
                            return new Maneuver(b, nextState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                        else if (ts.Interconnect.FinalGeneric is ArbiterPerimeterWaypoint)
                        {
                            // stay in target lane
                            IState nextState = new ZoneTravelingState(((ArbiterPerimeterWaypoint)ts.Interconnect.FinalGeneric).Perimeter.Zone, (INavigableNode)ts.Interconnect.FinalGeneric);
                            Behavior b = new NullBehavior();
                            return new Maneuver(b, nextState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                        else
                            throw new Exception("unhandled unterconnect final wp type");
                    }

                    // get interconnect
                    if (ts.Interconnect.FinalGeneric is ArbiterWaypoint)
                    {
                        // nav plan
                        IntersectionPlan ip = navigation.PlanIntersection((ITraversableWaypoint)ts.Interconnect.InitialGeneric, goal);

                        // plan
                        Maneuver final = tactical.Plan(CoreCommon.CorePlanningState, ip, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                        // return final maneuver
                        return final;
                    }
                    // else to zone
                    else if (ts.Interconnect.FinalGeneric is ArbiterPerimeterWaypoint)
                    {
                        // plan
                        Maneuver final = tactical.Plan(CoreCommon.CorePlanningState, null, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                        // return final maneuver
                        return final;
                    }
                    else
                    {
                        throw new Exception("method not imp");
                    }
                }

                #endregion

                #region uTurn State

                else if (CoreCommon.CorePlanningState is uTurnState)
                {
                    // get state
                    uTurnState uts = (uTurnState)CoreCommon.CorePlanningState;

                    // plan over the target segment, ignoring the initial waypoint of the target lane
                    ArbiterWaypoint initial = uts.TargetLane.GetClosestPartition(vehicleState.Position).Initial;
                    List<ArbiterWaypoint> iws = RoadToolkit.WaypointsClose(initial.Lane.Way, vehicleState.Front, initial);
                    RoadPlan rp = navigation.PlanRoads(uts.TargetLane, vehicleState.Front, goal, iws);

                    // plan
                    Maneuver final = tactical.Plan(CoreCommon.CorePlanningState, rp, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                    // return final maneuver
                    return final;
                }

                #endregion

                #region Intersection Startup State

                else if (CoreCommon.CorePlanningState is IntersectionStartupState)
                {
                    // get startup state
                    IntersectionStartupState iss = (IntersectionStartupState)CoreCommon.CorePlanningState;

                    // get intersection
                    ArbiterIntersection ai = iss.Intersection;

                    // get plan
                    IEnumerable<ITraversableWaypoint> entries = ai.AllEntries.Values;
                    IntersectionStartupPlan isp = navigation.PlanIntersectionStartup(entries, goal);

                    // plan tac
                    Maneuver final = tactical.Plan(iss, isp, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                    // return
                    return final;
                }

                #endregion

                #region Unknown

                else
                {
                    // non-handled state
                    throw new ArgumentException("Unknown state", "CoreCommon.CorePlanningState");
                }

                #endregion
            }

            #endregion

            #region Zone State

            else if (CoreCommon.CorePlanningState is ZoneState)
            {
                #region Zone Travelling State

                if (CoreCommon.CorePlanningState is ZoneTravelingState)
                {
                    // set state
                    ZoneTravelingState zts = (ZoneTravelingState)CoreCommon.CorePlanningState;

                    // check to see if we're stopped
                    if (CoreCommon.Communications.HasCompleted((new ZoneTravelingBehavior(null, null, new Polygon[0], null, null, null, null)).GetType()))
                    {
                        // plan over state and zone
                        ZonePlan zp = this.navigation.PlanZone(zts.Zone, zts.Start, CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId]);

                        if (zp.ZoneGoal is ArbiterParkingSpotWaypoint)
                        {
                            // move to parking state
                            ParkingState ps = new ParkingState(zp.Zone, ((ArbiterParkingSpotWaypoint)zp.ZoneGoal).ParkingSpot);
                            return new Maneuver(new HoldBrakeBehavior(), ps, TurnDecorators.NoDecorators, vehicleState.Timestamp);

                        }
                        else if(zp.ZoneGoal is ArbiterPerimeterWaypoint)
                        {
                            // get plan
                            IntersectionPlan ip = navigation.GetIntersectionExitPlan((ITraversableWaypoint)zp.ZoneGoal, goal);

                            // move to exit
                            WaitingAtIntersectionExitState waies = new WaitingAtIntersectionExitState((ITraversableWaypoint)zp.ZoneGoal, ip.BestOption.ToInterconnect.TurnDirection, new IntersectionDescription(), ip.BestOption.ToInterconnect);
                            return new Maneuver(new HoldBrakeBehavior(), waies, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                    }
                    else
                    {
                        // plan over state and zone
                        ZonePlan zp = this.navigation.PlanZone(zts.Zone, zts.Start, CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId]);

                        // plan
                        Maneuver final = tactical.Plan(CoreCommon.CorePlanningState, zp, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                        // return final maneuver
                        return final;
                    }
                }

                #endregion

                #region Parking State

                else if (CoreCommon.CorePlanningState is ParkingState)
                {
                    // set state
                    ParkingState ps = (ParkingState)CoreCommon.CorePlanningState;

                    // check to see if we're stopped
                    if (CoreCommon.Communications.HasCompleted((new ZoneParkingBehavior(null, null, new Polygon[0], null, null, null, null, null, 0.0)).GetType()))
                    {
                        if (ps.ParkingSpot.Checkpoint.CheckpointId.Equals(CoreCommon.Mission.MissionCheckpoints.Peek().CheckpointNumber))
                        {
                            ArbiterOutput.Output("Reached Goal, cp: " + ps.ParkingSpot.Checkpoint.CheckpointId.ToString());
                            CoreCommon.Mission.MissionCheckpoints.Dequeue();
                        }

                        // pull out of the space
                        PullingOutState pos = new PullingOutState(ps.Zone, ps.ParkingSpot);
                        return new Maneuver(new HoldBrakeBehavior(), pos, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                    else
                    {
                        // plan
                        Maneuver final = tactical.Plan(CoreCommon.CorePlanningState, null, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                        // return final maneuver
                        return final;
                    }
                }

                #endregion

                #region Pulling Out State

                else if (CoreCommon.CorePlanningState is PullingOutState)
                {
                    // set state
                    PullingOutState pos = (PullingOutState)CoreCommon.CorePlanningState;

                    // plan over state and zone
                    ZonePlan zp = this.navigation.PlanZone(pos.Zone, pos.ParkingSpot.Checkpoint, goal);

                    // check to see if we're stopped
                    if (CoreCommon.Communications.HasCompleted((new ZoneParkingPullOutBehavior(null, null, new Polygon[0], null, null, null, null, null, null, null, null)).GetType()))
                    {
                        // maneuver to next place to go
                        return new Maneuver(new HoldBrakeBehavior(), new ZoneTravelingState(pos.Zone, pos.ParkingSpot.Checkpoint), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                    else
                    {
                        // plan
                        Maneuver final = tactical.Plan(CoreCommon.CorePlanningState, zp, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                        // return final maneuver
                        return final;
                    }
                }

                #endregion

                #region Zone Startup State

                else if (CoreCommon.CorePlanningState is ZoneStartupState)
                {
                    // feed through the plan from the zone tactical
                    Maneuver final = tactical.Plan(CoreCommon.CorePlanningState, null, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                    // return final maneuver
                    return final;
                }

                #endregion

                #region Zone Orientation

                else if (CoreCommon.CorePlanningState is ZoneOrientationState)
                {
                    ZoneOrientationState zos = (ZoneOrientationState)CoreCommon.CorePlanningState;

                    // add bounds to observable
                    LinePath lp = new LinePath(new Coordinates[] { zos.final.Start.Position, zos.final.End.Position });
                    CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(lp.ShiftLateral(TahoeParams.T), ArbiterInformationDisplayObjectType.leftBound));
                    CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(lp.ShiftLateral(-TahoeParams.T), ArbiterInformationDisplayObjectType.rightBound));

                    // check to see if we're stopped
                    //if (CoreCommon.Communications.HasCompleted((new UTurnBehavior(null, null, null, null)).GetType()))
                    //{
                        // maneuver to next place to go
                        return new Maneuver(new HoldBrakeBehavior(), new ZoneTravelingState(zos.Zone, zos.final.End), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    //}
                    // not stopped doing hte maneuver
                    //else
                    //	return new Maneuver(zos.Resume(vehicleState, 1.4), zos, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                }

                #endregion

                #region Unknown

                else
                {
                    // non-handled state
                    throw new ArgumentException("Unknown state", "CoreCommon.CorePlanningState");
                }

                #endregion
            }

            #endregion

            #region Other State

            else if (CoreCommon.CorePlanningState is OtherState)
            {
                #region Start Up State

                if (CoreCommon.CorePlanningState is StartUpState)
                {
                    // get state
                    StartUpState sus = (StartUpState)CoreCommon.CorePlanningState;

                    // make a new startup agent
                    StartupReasoning sr = new StartupReasoning(this.laneAgent);

                    // get final state
                    IState nextState = sr.Startup(vehicleState, carMode);

                    // return no op ad zero all decorators
                    Behavior nextBehavior = sus.Resume(vehicleState, vehicleSpeed);

                    // return maneuver
                    return new Maneuver(nextBehavior, nextState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                }

                #endregion

                #region Paused State

                else if (CoreCommon.CorePlanningState is PausedState)
                {
                    // if switch back to run
                    if (carMode == CarMode.Run)
                    {
                        // get state
                        PausedState ps = (PausedState)CoreCommon.CorePlanningState;

                        // get what we were previously doing
                        IState previousState = ps.PreviousState();

                        // check if can resume
                        if (previousState != null && previousState.CanResume())
                        {
                            // resume state is next
                            return new Maneuver(new HoldBrakeBehavior(), new ResumeState(previousState), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                        // otherwise go to startup
                        else
                        {
                            // next state is startup
                            IState nextState = new StartUpState();

                            // return no op
                            Behavior nextBehavior = new HoldBrakeBehavior();

                            // return maneuver
                            return new Maneuver(nextBehavior, nextState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                    }
                    // otherwise stay stopped
                    else
                    {
                        // stay stopped and paused
                        return new Maneuver(new HoldBrakeBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                }

                #endregion

                #region Human State

                else if (CoreCommon.CorePlanningState is HumanState)
                {
                    // change to startup
                    if (carMode == CarMode.Run)
                    {
                        // next is startup
                        IState next = new StartUpState();

                        // next behavior just stay iin place for now
                        Behavior behavior = new HoldBrakeBehavior();

                        // return startup maneuver
                        return new Maneuver(behavior, next, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                    // in human mode still
                    else
                    {
                        // want to remove old behavior stuff
                        return new Maneuver(new NullBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                }

                #endregion

                #region Resume State

                else if (CoreCommon.CorePlanningState is ResumeState)
                {
                    // get state
                    ResumeState rs = (ResumeState)CoreCommon.CorePlanningState;

                    // make sure can resume (this is simple action)
                    if (rs.StateToResume != null && rs.StateToResume.CanResume())
                    {
                        // return old behavior
                        Behavior nextBehavior = rs.Resume(vehicleState, vehicleSpeed);

                        // return maneuver
                        return new Maneuver(nextBehavior, rs.StateToResume, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                    // otherwise just startup
                    else
                    {
                        // startup
                        return new Maneuver(new HoldBrakeBehavior(), new StartUpState(), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                }

                #endregion

                #region No Goals Left State

                else if (CoreCommon.CorePlanningState is NoGoalsLeftState)
                {
                    // check if goals available
                    if (CoreCommon.Mission.MissionCheckpoints.Count > 0)
                    {
                        // startup
                        return new Maneuver(new HoldBrakeBehavior(), new StartUpState(), TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                    else
                    {
                        // stay paused
                        return new Maneuver(new HoldBrakeBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                }

                #endregion

                #region eStopped State

                else if (CoreCommon.CorePlanningState is eStoppedState)
                {
                    // change to startup
                    if (carMode == CarMode.Run)
                    {
                        // next is startup
                        IState next = new StartUpState();

                        // next behavior just stay iin place for now
                        Behavior behavior = new HoldBrakeBehavior();

                        // return startup maneuver
                        return new Maneuver(behavior, next, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                    // in human mode still
                    else
                    {
                        // want to remove old behavior stuff
                        return new Maneuver(new NullBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                }

                #endregion

                #region Unknown

                else
                {
                    // non-handled state
                    throw new ArgumentException("Unknown OtherState type", "CoreCommon.CorePlanningState");
                }

                #endregion
            }

            #endregion

            #region Blockage State

            else if (CoreCommon.CorePlanningState is BlockageState)
            {
                #region Blockage State

                // something is blocked, in the encountered state we want to filter to base components of state
                if (CoreCommon.CorePlanningState is EncounteredBlockageState)
                {
                    // cast blockage state
                    EncounteredBlockageState bs = (EncounteredBlockageState)CoreCommon.CorePlanningState;

                    // plan through the blockage state with no road plan as just a quick filter
                    Maneuver final = tactical.Plan(bs, null, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                    // return the final maneuver
                    return final;
                }

                #endregion

                #region Blockage Recovery State

                // recover from blockages
                else if (CoreCommon.CorePlanningState is BlockageRecoveryState)
                {
                    // get the blockage recovery state
                    BlockageRecoveryState brs = (BlockageRecoveryState)CoreCommon.CorePlanningState;

                    #region Check Various Statuses of Completion

                    // check successful completion report of behavior
                    if (brs.RecoveryBehavior != null && CoreCommon.Communications.HasCompleted(brs.RecoveryBehavior.GetType()))
                    {
                        // set updated status
                        ArbiterOutput.Output("Successfully received completion of behavior: " + brs.RecoveryBehavior.ToShortString() + ", " + brs.RecoveryBehavior.ShortBehaviorInformation());
                        brs.RecoveryStatus = BlockageRecoverySTATUS.COMPLETED;

                        // move to the tactical plan
                        return this.tactical.Plan(brs, null, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);
                    }
                    // check operational startup
                    else if (CoreCommon.Communications.HasCompleted((new OperationalStartupBehavior()).GetType()))
                    {
                        // check defcon types
                        if (brs.Defcon == BlockageRecoveryDEFCON.REVERSE)
                        {
                            // abort maneuver as operational has no state information
                            return new Maneuver(new NullBehavior(), brs.AbortState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                    }

                    #endregion

                    #region Information

                    // set recovery information
                    CoreCommon.CurrentInformation.FQMState = brs.EncounteredState.ShortDescription();
                    CoreCommon.CurrentInformation.FQMStateInfo = brs.EncounteredState.StateInformation();
                    CoreCommon.CurrentInformation.FQMBehavior = brs.RecoveryBehavior != null ? brs.RecoveryBehavior.ToShortString() : "NONE";
                    CoreCommon.CurrentInformation.FQMBehaviorInfo = brs.RecoveryBehavior != null ? brs.RecoveryBehavior.ShortBehaviorInformation() : "NONE";
                    CoreCommon.CurrentInformation.FQMSpeed = brs.RecoveryBehavior != null ? brs.RecoveryBehavior.SpeedCommandString() : "NONE";

                    #endregion

                    #region Blocked

                    if (brs.RecoveryStatus == BlockageRecoverySTATUS.BLOCKED)
                    {
                        if (brs.RecoveryBehavior is ChangeLaneBehavior)
                        {
                            brs.RecoveryStatus = BlockageRecoverySTATUS.ENCOUNTERED;
                            brs.Defcon = BlockageRecoveryDEFCON.CHANGELANES_FORWARD;
                            return new Maneuver(new HoldBrakeBehavior(), brs, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                        else
                        {
                            ArbiterOutput.Output("Recovery behavior blocked, reverting to abort state: " + brs.AbortState.ToString());
                            return new Maneuver(new HoldBrakeBehavior(), brs.AbortState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                    }

                    #endregion

                    #region Navigational Plan

                    // set navigational plan
                    INavigationalPlan navPlan = null;

                    #region Encountered

                    // blockage
                    if (brs.RecoveryStatus == BlockageRecoverySTATUS.ENCOUNTERED)
                    {
                        // get state
                        if (brs.AbortState is StayInLaneState)
                        {
                            // lane state
                            StayInLaneState sils = (StayInLaneState)brs.AbortState;
                            navPlan = navigation.PlanNavigableArea(sils.Lane, vehicleState.Position, goal, sils.WaypointsToIgnore);
                        }
                    }

                    #endregion

                    #region Completion

                    // blockage
                    if (brs.RecoveryStatus == BlockageRecoverySTATUS.COMPLETED)
                    {
                        // get state
                        if (brs.CompletionState is StayInLaneState)
                        {
                            // lane state
                            StayInLaneState sils = (StayInLaneState)brs.CompletionState;
                            navPlan = navigation.PlanNavigableArea(sils.Lane, vehicleState.Position, goal, sils.WaypointsToIgnore);
                        }
                    }

                    #endregion

                    #endregion

                    // move to the tactical plan
                    Maneuver final = this.tactical.Plan(brs, navPlan, vehicleState, observedVehicles, observedObstacles, blockages, vehicleSpeed);

                    // return the final maneuver
                    return final;
                }

                #endregion
            }

            #endregion

            #region Unknown

            else
            {
                // non-handled state
                throw new ArgumentException("Unknown state", "CoreCommon.CorePlanningState");
            }

            // for now, return null
            return new Maneuver();

            #endregion
        }
        /// <summary>
        /// Turn information
        /// </summary>
        /// <param name="entry"></param>
        /// <param name="finalPath"></param>
        /// <param name="leftBound"></param>
        /// <param name="rightBound"></param>
        public static void ZoneTurnInfo(ArbiterInterconnect ai, ArbiterPerimeterWaypoint entry, out LinePath finalPath, out LineList leftBound, out LineList rightBound)
        {
            //Coordinates centerVec = entry.Perimeter.PerimeterPolygon.CalculateBoundingCircle().center - entry.Position;
            Coordinates centerVec = ai.InterconnectPath[1] - ai.InterconnectPath[0];
            centerVec = centerVec.Normalize(TahoeParams.VL);
            finalPath = new LinePath(new Coordinates[] { entry.Position, entry.Position + centerVec });

            leftBound = finalPath.ShiftLateral(TahoeParams.T * 2.0);
            rightBound = finalPath.ShiftLateral(-TahoeParams.T * 2.0);
        }
Example #21
0
        public void Render(IGraphics g, WorldTransform wt)
        {
            LocalLaneModel laneModel = this.laneModel;

            if (laneModel == null || laneModel.LanePath == null || laneModel.LanePath.Count <= 1)
            {
                return;
            }

            // generate the left and right bounds
            LinePath leftBound  = laneModel.LanePath.ShiftLateral(laneModel.Width / 2.0);
            LinePath leftBound2 = null;

            if (laneModel.WidthVariance > 0.01)
            {
                leftBound2 = laneModel.LanePath.ShiftLateral(laneModel.Width / 2.0 + Math.Sqrt(laneModel.WidthVariance) * 1.96 / 2.0);
            }

            LinePath rightBound  = laneModel.LanePath.ShiftLateral(-laneModel.Width / 2.0);
            LinePath rightBound2 = null;

            if (laneModel.WidthVariance > 0.01)
            {
                rightBound2 = laneModel.LanePath.ShiftLateral(-laneModel.Width / 2.0 - Math.Sqrt(laneModel.WidthVariance) * 1.96 / 2.0);
            }

            // generate a polygon of the confidence region of the center line
            Polygon centerConfLeft  = null;
            Polygon centerConfRight = null;
            Polygon centerConfFull  = null;

            if (sigma > 0 && laneModel.LaneYVariance != null && laneModel.LaneYVariance.Length == laneModel.LanePath.Count)
            {
                float varianceThreshold = 9f * 9f;
                if (laneModel.LaneYVariance[0] > varianceThreshold)
                {
                    varianceThreshold = 600;
                }
                int numPoints;
                for (numPoints = 0; numPoints < laneModel.LaneYVariance.Length; numPoints++)
                {
                    if (laneModel.LaneYVariance[numPoints] > varianceThreshold)
                    {
                        break;
                    }
                }
                double[] leftDist  = new double[numPoints];
                double[] rightDist = new double[numPoints];

                double prevDist = 0;
                for (int i = 0; i < numPoints; i++)
                {
                    double dist = laneModel.LaneYVariance[i];
                    if (dist > 0.01)
                    {
                        dist         = Math.Sqrt(dist) * sigma;
                        leftDist[i]  = dist;
                        rightDist[i] = -dist;
                        prevDist     = dist;
                    }
                    else
                    {
                        leftDist[i]  = prevDist;
                        rightDist[i] = -prevDist;
                    }
                }

                // get the subset of the lane model we're interested in
                LinePath subset = laneModel.LanePath.SubPath(0, numPoints - 1);

                LinePath left  = subset.ShiftLateral(leftDist);
                LinePath right = subset.ShiftLateral(rightDist);

                Coordinates midTop    = (left[left.Count - 1] + right[right.Count - 1]) / 2.0;
                Coordinates midBottom = (left[0] + right[0]) / 2.0;

                centerConfLeft = new Polygon(numPoints + 2);
                centerConfLeft.Add(midTop);
                centerConfLeft.Add(midBottom);
                centerConfLeft.AddRange(left);

                centerConfRight = new Polygon(numPoints + 2);
                centerConfRight.Add(midTop);
                centerConfRight.Add(midBottom);
                centerConfRight.AddRange(right);

                centerConfFull = new Polygon(numPoints * 2);
                right.Reverse();
                centerConfFull.AddRange(right);
                centerConfFull.AddRange(left);
            }

            // draw the shits
            IPen pen = g.CreatePen();

            pen.Width = 1.0f / wt.Scale;
            pen.Color = color;

            // first draw the confidence polygon
            if (centerConfFull != null)
            {
                g.FillPolygon(Color.FromArgb(20, color), Utility.ToPointF(centerConfLeft));
                g.FillPolygon(Color.FromArgb(20, color), Utility.ToPointF(centerConfRight));
                pen.Color = Color.FromArgb(30, color);
                g.DrawPolygon(pen, Utility.ToPointF(centerConfFull));
            }

            // next draw the center line
            pen.Color = color;
            //g.DrawLines(pen, Utility.ToPointF(laneModel.LanePath));

            //// next draw the left lane confidence bound
            //if (leftBound2 != null) {
            //  pen.DashStyle = System.Drawing.Drawing2D.DashStyle.Dot;
            //  g.DrawLines(pen, Utility.ToPointF(leftBound2));
            //}

            //// draw the right lane confidence bound
            //if (rightBound2 != null) {
            //  pen.DashStyle = System.Drawing.Drawing2D.DashStyle.Dot;
            //  g.DrawLines(pen, Utility.ToPointF(rightBound2));
            //}

            // draw the left bound
            pen.DashStyle = System.Drawing.Drawing2D.DashStyle.Solid;
            g.DrawLines(pen, Utility.ToPointF(leftBound));
            // draw the right bound
            g.DrawLines(pen, Utility.ToPointF(rightBound));

            // draw the model confidence
            string labelString = laneModel.Probability.ToString("F3");
            SizeF  stringSize  = g.MeasureString(labelString, labelFont);

            stringSize.Width  /= wt.Scale;
            stringSize.Height /= wt.Scale;
            RectangleF rect         = new RectangleF(Utility.ToPointF(laneModel.LanePath[0]), stringSize);
            float      inflateValue = 4 / wt.Scale;

            rect.X -= inflateValue;
            rect.Y -= inflateValue;
            g.FillRectangle(Color.FromArgb(127, Color.White), rect);
            g.DrawString(labelString, labelFont, Color.Black, Utility.ToPointF(laneModel.LanePath[0]));

            prevLeftBound  = leftBound;
            prevRightBound = rightBound;
        }
 private void GenerateSafetyZone()
 {
     if (!safetyZoneBegin.Location.Equals(safetyZoneEnd.Location))
     {
         LinePath lp = new LinePath(new Coordinates[] { safetyZoneBegin.Location, safetyZoneEnd.Location });
         LinePath lp1 = lp.ShiftLateral(-lane.Width / 2.0);
         LinePath lp2 = lp.ShiftLateral(lane.Width / 2.0);
         List<Coordinates> aszCoords = lp2;
         aszCoords.AddRange(lp1);
         this.SafetyPolygon = Polygon.GrahamScan(aszCoords);
     }
     else
     {
     }
 }
        /// <summary>
        /// Maneuver for recovering from a lane blockage, used for lane changes as well
        /// </summary>
        /// <param name="lane"></param>
        /// <param name="vehicleState"></param>
        /// <param name="vehicleSpeed"></param>
        /// <param name="defcon"></param>
        /// <param name="saudi"></param>
        /// <returns></returns>
        public Maneuver LaneRecoveryManeuver(ArbiterLane lane, VehicleState vehicleState, double vehicleSpeed, 
            INavigationalPlan plan, BlockageRecoveryState brs, bool failedVehiclesPersistentlyOnly, out bool waitForUTurn)
        {
            // get the blockage
            ITacticalBlockage laneBlockageReport = brs.EncounteredState.TacticalBlockage;

            // get the turn state
            StayInLaneState sils = new StayInLaneState(lane, CoreCommon.CorePlanningState);

            // set wait false
            waitForUTurn = false;

            #region Reverse

            // check the state of the recovery for being the initial state
            if (brs.Defcon == BlockageRecoveryDEFCON.INITIAL)
            {
                // determine if the reverse behavior is recommended
                if (laneBlockageReport.BlockageReport.ReverseRecommended)
                {
                    // notify
                    ArbiterOutput.Output("Initial encounter, reverse recommended, reversing");

                    // get reverse behavior
                    StayInLaneBehavior reverseRecovery = this.LaneReverseRecovery(lane, vehicleState, vehicleSpeed, brs.EncounteredState.TacticalBlockage.BlockageReport);
                    reverseRecovery.TimeStamp = vehicleState.Timestamp;

                    // get recovery state
                    BlockageRecoveryState brsT = new BlockageRecoveryState(
                        reverseRecovery, null, new StayInLaneState(lane, CoreCommon.CorePlanningState),
                        brs.Defcon = BlockageRecoveryDEFCON.REVERSE, brs.EncounteredState, BlockageRecoverySTATUS.EXECUTING);
                    brsT.CompletionState = brsT;

                    // reset blockages
                    BlockageHandler.SetDefaultBlockageCooldown();

                    // maneuver
                    return new Maneuver(reverseRecovery, brsT, TurnDecorators.HazardDecorator, vehicleState.Timestamp);
                }
            }

            #endregion

            #region uTurn

            // check if uturn is available
            ArbiterLane opp = this.tacticalUmbrella.roadTactical.forwardReasoning.GetClosestOpposing(lane, vehicleState);

            // resoning
            OpposingLateralReasoning olrTmp = new OpposingLateralReasoning(opp, SideObstacleSide.Driver);

            if (opp != null && olrTmp.ExistsExactlyHere(vehicleState) && opp.IsInside(vehicleState.Front) && opp.LanePath().GetClosestPoint(vehicleState.Front).Location.DistanceTo(vehicleState.Front) < TahoeParams.VL * 3.0)
            {
                // check possible to reach goal given block partition way
                RoadPlan uTurnNavTest = CoreCommon.Navigation.PlanRoadOppositeWithoutPartition(
                    lane.GetClosestPartition(vehicleState.Front),
                    opp.GetClosestPartition(vehicleState.Front),
                    CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId],
                    true,
                    vehicleState.Front,
                    true);

                // flag to try the uturn
                bool uturnTry = false;

                // all polygons to include
                List<Polygon> allPolys = BlockageTactical.AllForwardPolygons(vehicleState, failedVehiclesPersistentlyOnly);// .AllObstacleAndStoppedVehiclePolygons(vehicleState);

                // test blockage takes up segment
                double numLanesLeft = lane.NumberOfLanesLeft(vehicleState.Front, true);
                double numLanesRight = lane.NumberOfLanesRight(vehicleState.Front, true);
                LinePath leftBound = lane.LanePath().ShiftLateral((lane.Width * numLanesLeft) + (lane.Width / 2.0));
                LinePath rightBound = lane.LanePath().ShiftLateral((lane.Width * numLanesRight) + (lane.Width / 2.0));
                bool segmentBlockage = BlockageTester.TestBlockage(allPolys, leftBound, rightBound);
                uturnTry = segmentBlockage;

                // check if we should try the uturn
                if(uturnTry)
                {
                    // check uturn timer
                    if(uTurnTimer.ElapsedMilliseconds / 1000.0 > 2.0)
                    {
                        #region Determine Checkpoint

                        // check route feasible
                        if (uTurnNavTest.BestPlan.laneWaypointOfInterest.RouteTime < double.MaxValue - 1
                            && uTurnNavTest.BestPlan.laneWaypointOfInterest.TimeCostToPoint < double.MaxValue - 1)
                        {
                            ArbiterOutput.Output("valid route to checkpoint by rerouting, uturning");
                        }
                        // otherwise remove the next checkpoint
                        else
                        {
                            // notiify
                            ArbiterOutput.Output("NO valid route to checkpoint by rerouting");

                            // get the next cp
                            ArbiterCheckpoint cp1 = CoreCommon.Mission.MissionCheckpoints.Peek();

                            // get distance to blockage
                            double blockageDistance = 15.0;

                            // check cp is in our lane
                            if (cp1.WaypointId.AreaSubtypeId.Equals(lane.LaneId))
                            {
                                // check distance to cp1
                                double distanceToCp1 = lane.DistanceBetween(vehicleState.Front, CoreCommon.RoadNetwork.ArbiterWaypoints[cp1.WaypointId].Position);

                                // check that this is an already inserted waypoint
                                if (cp1.Type == CheckpointType.Inserted)
                                {
                                    // remove cp
                                    ArbiterCheckpoint ac = CoreCommon.Mission.MissionCheckpoints.Dequeue();
                                    ArbiterOutput.Output("removed checkpoint: " + ac.WaypointId.ToString() + " as inserted type of checkpoint");

                                    ArbiterCheckpoint ac2 = CoreCommon.Mission.MissionCheckpoints.Dequeue();
                                    ArbiterOutput.Output("removed checkpoint: " + ac2.WaypointId.ToString() + " as blocked type of checkpoint");
                                }
                                // closer to us than the blockage
                                else if (distanceToCp1 < blockageDistance)
                                {
                                    // remove cp
                                    ArbiterCheckpoint ac = CoreCommon.Mission.MissionCheckpoints.Dequeue();
                                    ArbiterOutput.Output("removed checkpoint: " + ac.WaypointId.ToString() + " as between us and the blockage ~ 15m away");
                                }
                                // very close to blockage on the other side
                                else if (distanceToCp1 < blockageDistance + 5.0)
                                {
                                    // remove cp
                                    ArbiterCheckpoint ac = CoreCommon.Mission.MissionCheckpoints.Dequeue();
                                    ArbiterOutput.Output("removed checkpoint: " + ac.WaypointId.ToString() + " as on the other side of blockage ~ 15m away");
                                }
                                // further away from the blockage
                                else
                                {
                                    // check over all checkpoints if there exists a checkpoint cp2 in the opposing lane within 5m along our lane
                                    ArbiterCheckpoint cp2 = null;
                                    foreach (ArbiterWaypoint oppAw in opp.WaypointList)
                                    {
                                        // check checkpoint
                                        if (oppAw.IsCheckpoint)
                                        {
                                            // distance between us and that waypoint
                                            double distanceToCp2 = lane.DistanceBetween(vehicleState.Front, oppAw.Position);

                                            // check along distance < 5.0m
                                            if (Math.Abs(distanceToCp1 - distanceToCp2) < 5.0)
                                            {
                                                // set cp
                                                cp2 = new ArbiterCheckpoint(oppAw.CheckpointId, oppAw.WaypointId, CheckpointType.Inserted);
                                            }
                                        }
                                    }

                                    // check close cp exists
                                    if (cp2 != null)
                                    {
                                        // remove cp1 and replace with cp2
                                        ArbiterOutput.Output("inserting checkpoint: " + cp2.WaypointId.ToString() + " before checkpoint: " + cp1.WaypointId.ToString() + " as can be replaced with adjacent opposing cp2");
                                        //CoreCommon.Mission.MissionCheckpoints.Dequeue();

                                        // get current checkpoints
                                        ArbiterCheckpoint[] updatedAcs = new ArbiterCheckpoint[CoreCommon.Mission.MissionCheckpoints.Count + 1];
                                        updatedAcs[0] = cp2;
                                        CoreCommon.Mission.MissionCheckpoints.CopyTo(updatedAcs, 1);
                                        updatedAcs[1].Type = CheckpointType.Blocked;
                                        CoreCommon.Mission.MissionCheckpoints = new Queue<ArbiterCheckpoint>(new List<ArbiterCheckpoint>(updatedAcs));
                                    }
                                    // otherwise remove cp1
                                    else
                                    {
                                        // remove cp
                                        ArbiterCheckpoint ac = CoreCommon.Mission.MissionCheckpoints.Dequeue();
                                        ArbiterOutput.Output("removed checkpoint: " + ac.WaypointId.ToString() + " as cp not further down our lane");
                                    }
                                }
                            }
                            // otherwise we remove the checkpoint
                            else
                            {
                                // remove cp
                                ArbiterCheckpoint ac = CoreCommon.Mission.MissionCheckpoints.Dequeue();
                                ArbiterOutput.Output("removed checkpoint: " + ac.WaypointId.ToString() + " as cp not further down our lane");
                            }
                        }

                        #endregion

                        #region Plan Uturn

                        // notify
                        ArbiterOutput.Output("Segment blocked, uturn available");

                        // nav penalties
                        ArbiterLanePartition alpClose = lane.GetClosestPartition(vehicleState.Front);
                        CoreCommon.Navigation.AddHarshBlockageAcrossSegment(alpClose, vehicleState.Front);

                        // uturn
                        LinePath lpTmp = new LinePath(new Coordinates[] { vehicleState.Front, opp.LanePath().GetClosestPoint(vehicleState.Front).Location });
                        Coordinates vector = lpTmp[1] - lpTmp[0];
                        lpTmp[1] = lpTmp[1] + vector.Normalize(opp.Width / 2.0);
                        lpTmp[0] = lpTmp[0] - vector.Normalize(lane.Width / 2.0);
                        LinePath lb = lpTmp.ShiftLateral(15.0);
                        LinePath rb = lpTmp.ShiftLateral(-15.0);
                        List<Coordinates> uturnPolyCOords = new List<Coordinates>();
                        uturnPolyCOords.AddRange(lb);
                        uturnPolyCOords.AddRange(rb);
                        uTurnState uts = new uTurnState(opp, Polygon.GrahamScan(uturnPolyCOords));

                        // reset blockages
                        BlockageHandler.SetDefaultBlockageCooldown();

                        // reset the timers
                        this.Reset();

                        // go to uturn
                        return new Maneuver(uts.Resume(vehicleState, 2.0), uts, TurnDecorators.NoDecorators, vehicleState.Timestamp);

                        #endregion
                    }
                    // uturn timer not enough
                    else
                    {
                        // check timer running
                        if(!uTurnTimer.IsRunning)
                        {
                            uTurnTimer.Stop();
                            uTurnTimer.Reset();
                            uTurnTimer.Start();
                        }

                        // if gets here, need to wait
                        double time = uTurnTimer.ElapsedMilliseconds / 1000.0;
                        ArbiterOutput.Output("uTurn behavior evaluated to success, cooling down for: " + time.ToString("f2") + " out of 2");
                        waitForUTurn = true;
                        return new Maneuver(new HoldBrakeBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                }
                else
                {
                    waitForUTurn = false;
                    this.Reset();
                }
            }
            else
            {
                waitForUTurn = false;
                this.Reset();
            }

            #endregion

            #region Recovery Escalation

            // plan forward reasoning
            this.tacticalUmbrella.roadTactical.forwardReasoning.ForwardManeuver(lane, vehicleState, (RoadPlan)plan, new List<ITacticalBlockage>(), new List<ArbiterWaypoint>());

            // check clear on right, or if it does nto exist here
            ILateralReasoning rightLateral = this.tacticalUmbrella.roadTactical.rightLateralReasoning;
            bool rightClear = !rightLateral.Exists || !rightLateral.ExistsExactlyHere(vehicleState) ||
                rightLateral.AdjacentAndRearClear(vehicleState);

            // check clear on left, or if it does nto exist here
            ILateralReasoning leftLateral = this.tacticalUmbrella.roadTactical.leftLateralReasoning;
            bool leftClear = !leftLateral.Exists || !leftLateral.ExistsExactlyHere(vehicleState) ||
                leftLateral.AdjacentAndRearClear(vehicleState);
            if(leftClear && leftLateral is OpposingLateralReasoning)
                leftClear = leftLateral.ForwardClear(vehicleState, TahoeParams.VL * 3.0, 2.24,
                    new LaneChangeInformation(LaneChangeReason.FailedForwardVehicle, null),
                    lane.LanePath().AdvancePoint(lane.LanePath().GetClosestPoint(vehicleState.Front), TahoeParams.VL * 3.0).Location);

            // check both clear to widen
            bool widenOk = rightClear && leftClear;

            // Notify
            ArbiterOutput.Output("Blockage tactical recovery escalation: rightClear: " + rightClear.ToString() + ", leftCler: " + leftClear.ToString());

            // if we can't widen for some reason just go through with no widen
            StayInLaneBehavior silb = this.LaneRecoveryBehavior(lane, vehicleState, vehicleSpeed, plan, brs, brs.EncounteredState);
            silb.TimeStamp = vehicleState.Timestamp;

            // check widen
            if (widenOk)
            {
                // output
                ArbiterOutput.Output("Lane Blockage Recovery: Adjacent areas clear");

                // mini icrease width
                silb.LaneWidth = silb.LaneWidth + TahoeParams.T;

                // check execute none saudi
                CompletionReport l0Cr;
                bool l0TestOk = CoreCommon.Communications.TestExecute(silb, out l0Cr);

                // check mini ok
                if (l0TestOk)
                {
                    // notify
                    ArbiterOutput.Output("Lane Blockage Recovery: Test Tahoe.T lane widen ok");

                    // update the current state
                    BlockageRecoveryState brsL0 = new BlockageRecoveryState(
                        silb, sils, sils, BlockageRecoveryDEFCON.WIDENBOUNDS, brs.EncounteredState, BlockageRecoverySTATUS.EXECUTING);
                    return new Maneuver(silb, brsL0, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                }
                else
                {
                    // notify
                    ArbiterOutput.Output("Lane Blockage Recovery: Test Tahoe.T lane widen failed, moving to large widen");

                    #region Change Lanes

                    // check not in change lanes
                    if (brs.Defcon != BlockageRecoveryDEFCON.CHANGELANES_FORWARD && brs.Defcon != BlockageRecoveryDEFCON.WIDENBOUNDS)
                    {
                        // check normal change lanes reasoning
                        bool shouldWait;
                        IState laneChangeCompletionState;
                        ChangeLaneBehavior changeLanesBehavior = this.ChangeLanesRecoveryBehavior(lane, vehicleState, out shouldWait, out laneChangeCompletionState);

                        // check change lanes behaviore exists
                        if (changeLanesBehavior != null)
                        {
                            ArbiterOutput.Output("Lane Blockage Recovery: Found adjacent lane available change lanes beahvior: " + changeLanesBehavior.ToShortString() + ", " + changeLanesBehavior.ShortBehaviorInformation());

                            // update the current state
                            BlockageRecoveryState brsCL = new BlockageRecoveryState(
                                changeLanesBehavior, laneChangeCompletionState, sils, BlockageRecoveryDEFCON.CHANGELANES_FORWARD, brs.EncounteredState, BlockageRecoverySTATUS.EXECUTING);
                            return new Maneuver(changeLanesBehavior, brsCL, changeLanesBehavior.ChangeLeft ? TurnDecorators.LeftTurnDecorator : TurnDecorators.RightTurnDecorator, vehicleState.Timestamp);
                        }
                        // check should wait
                        else if (shouldWait)
                        {
                            ArbiterOutput.Output("Lane Blockage Recovery: Should wait for the forward lane, waiting");
                            return new Maneuver(new HoldBrakeBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                        }
                    }

                    #endregion

                    // notify
                    ArbiterOutput.Output("Lane Blockage Recovery: Fell Through Forward Change Lanes");

                    // increase width
                    silb.LaneWidth = silb.LaneWidth * 3.0;

                    // check execute l1
                    CompletionReport l1Cr;
                    bool l1TestOk = CoreCommon.Communications.TestExecute(silb, out l1Cr);

                    // check ok
                    if (l1TestOk)
                    {
                        // notify
                        ArbiterOutput.Output("Lane Blockage Recovery: Test 3LW lane large widen ok");

                        // update the current state
                        BlockageRecoveryState brsL1 = new BlockageRecoveryState(
                            silb, sils, sils, BlockageRecoveryDEFCON.WIDENBOUNDS, brs.EncounteredState, BlockageRecoverySTATUS.EXECUTING);
                        return new Maneuver(silb, brsL1, TurnDecorators.NoDecorators, vehicleState.Timestamp);
                    }
                    // go to l2 for all the marbles
                    else
                    {
                        // notify
                        ArbiterOutput.Output("Lane Blockage Recovery: Test 3LW lane large widen failed, moving to 3LW, L1 Saudi");

                        ShutUpAndDoItDecorator saudi2 = new ShutUpAndDoItDecorator(SAUDILevel.L1);
                        List<BehaviorDecorator> saudi2bds = new List<BehaviorDecorator>(new BehaviorDecorator[] { saudi2 });
                        silb.Decorators = saudi2bds;
                        BlockageRecoveryState brsL2 = new BlockageRecoveryState(
                            silb, sils, sils, BlockageRecoveryDEFCON.WIDENBOUNDS, brs.EncounteredState, BlockageRecoverySTATUS.EXECUTING);
                        return new Maneuver(silb, brsL2, saudi2bds, vehicleState.Timestamp);
                    }
                }
            }

            #endregion

            // fallout goes back to lane state
            return new Maneuver(new HoldBrakeBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp);
        }
        private ILaneModel GetLaneModel(LocalLaneModel laneModel, LinePath rndfPath, double rndfPathWidth, CarTimestamp rndfPathTimestamp)
        {
            // check the lane model probability
            if (laneModel.Probability < lane_probability_reject_threshold) {
                // we're rejecting this, just return a path lane model
                return new PathLaneModel(rndfPathTimestamp, rndfPath, rndfPathWidth);
            }

            // project the lane model's path into the rndf path's timestamp
            RelativeTransform relTransform = Services.RelativePose.GetTransform(localRoadModel.Timestamp, rndfPathTimestamp);
            LinePath laneModelPath = laneModel.LanePath.Transform(relTransform);

            // iterate through the waypoints in the RNDF path and project onto the lane model
            // the first one that is over the threshold, we consider the waypoint before as a potential ending point
            LinePath.PointOnPath laneModelDeviationEndPoint = new LinePath.PointOnPath();
            // flag indicating if any of the waypoint tests failed because of the devation was too high
            bool anyDeviationTooHigh = false;
            // number of waypoints accepted
            int numWaypointsAccepted = 0;

            // get the vehicle's position on the rndf path
            LinePath.PointOnPath rndfZeroPoint = rndfPath.ZeroPoint;

            // get the vehicle's position on the lane model
            LinePath.PointOnPath laneModelZeroPoint = laneModelPath.ZeroPoint;

            // get the last point we want to consider on the lane model
            LinePath.PointOnPath laneModelFarthestPoint = laneModelPath.AdvancePoint(laneModelZeroPoint, lane_model_max_dist);

            // start walking forward through the waypoints on the rndf path
            // this loop will implicitly exit when we're past the end of the lane model as the waypoints
            //		will stop being close to the lane model (GetClosestPoint returns the end point if we're past the
            //    end of the path)
            for (int i = rndfZeroPoint.Index+1; i < rndfPath.Count; i++) {
                // get the waypoint
                Coordinates rndfWaypoint = rndfPath[i];

                // get the closest point on the lane model
                LinePath.PointOnPath laneModelClosestPoint = laneModelPath.GetClosestPoint(rndfWaypoint);

                // compute the distance between the two
                double deviation = rndfWaypoint.DistanceTo(laneModelClosestPoint.Location);

                // if this is above the deviation threshold, leave the loop
                if (deviation > lane_deviation_reject_threshold || laneModelClosestPoint > laneModelFarthestPoint) {
                    // if we're at the end of the lane model path, we don't want to consider this a rejection
                    if (laneModelClosestPoint < laneModelFarthestPoint) {
                        // mark that at least on deviation was too high
                        anyDeviationTooHigh = true;
                    }
                    break;
                }

                // increment the number of waypoint accepted
                numWaypointsAccepted++;

                // update the end point of where we're valid as the local road model was OK up to this point
                laneModelDeviationEndPoint = laneModelClosestPoint;
            }

            // go through and figure out how far out the variance is within tolerance
            LinePath.PointOnPath laneModelVarianceEndPoint = new LinePath.PointOnPath();
            // walk forward from this point until the end of the lane mode path
            for (int i = laneModelZeroPoint.Index+1; i < laneModelPath.Count; i++) {
                // check if we're within the variance toleration
                if (laneModel.LaneYVariance[i] <= y_var_reject_threshold) {
                    // we are, update the point on path
                    laneModelVarianceEndPoint = laneModelPath.GetPointOnPath(i);
                }
                else {
                    // we are out of tolerance, break out of the loop
                    break;
                }
            }

            // now figure out everything out
            // determine waypoint rejection status
            WaypointRejectionResult waypointRejectionResult;
            if (laneModelDeviationEndPoint.Valid) {
                // if the point is valid, that we had at least one waypoint that was ok
                // check if any waypoints were rejected
                if (anyDeviationTooHigh) {
                    // some waypoint was ok, so we know that at least one waypoint was accepted
                    waypointRejectionResult = WaypointRejectionResult.SomeWaypointsAccepted;
                }
                else {
                    // no waypoint triggered a rejection, but at least one was good
                    waypointRejectionResult = WaypointRejectionResult.AllWaypointsAccepted;
                }
            }
            else {
                // the point is not valid, so we either had no waypoints or we had all rejections
                if (anyDeviationTooHigh) {
                    // the first waypoint was rejected, so all are rejected
                    waypointRejectionResult = WaypointRejectionResult.AllWaypointsRejected;
                }
                else {
                    // the first waypoint (if any) was past the end of the lane model
                    waypointRejectionResult = WaypointRejectionResult.NoWaypoints;
                }
            }

            // criteria for determining if this path is valid:
            //	- if some or all waypoints were accepted, than this is probably a good path
            //		- if some of the waypoints were accepted, we go no farther than the last waypoint that was accepted
            //	- if there were no waypoints, this is a potentially dangerous situation since we can't reject
            //    or confirm the local road model. for now, we'll assume that it is correct but this may need to change
            //    if we start handling intersections in this framework
            //  - if all waypoints were rejected, than we don't use the local road model
            //  - go no farther than the laneModelVarianceEndPoint, which is the last point where the y-variance of
            //    the lane model was in tolerance

            // now build out the lane model
            ILaneModel finalLaneModel;

            // check if we rejected all waypoints or no lane model points satisified the variance threshold
            if (waypointRejectionResult == WaypointRejectionResult.AllWaypointsRejected || !laneModelVarianceEndPoint.Valid) {
                // want to just use the path lane model
                finalLaneModel = new PathLaneModel(rndfPathTimestamp, rndfPath, rndfPathWidth);
            }
            else {
                // we'll use the lane model
                // need to build up the center line as well as left and right bounds

                // to build up the center line, use the lane model as far as we feel comfortable (limited by either variance
                // or by rejections) and then use the rndf lane after that.
                LinePath centerLine = new LinePath();

                // figure out the max distance
                // if there were no waypoints, set the laneModelDeviationEndPoint to the end of the lane model
                if (waypointRejectionResult == WaypointRejectionResult.NoWaypoints) {
                    laneModelDeviationEndPoint = laneModelFarthestPoint;
                }

                // figure out the closer of the end points
                LinePath.PointOnPath laneModelEndPoint = (laneModelDeviationEndPoint < laneModelVarianceEndPoint) ? laneModelDeviationEndPoint : laneModelVarianceEndPoint;
                bool endAtWaypoint = laneModelEndPoint == laneModelDeviationEndPoint;

                // add the lane model to the center line
                centerLine.AddRange(laneModelPath.GetSubpathEnumerator(laneModelZeroPoint, laneModelEndPoint));

                // create a list to hold the width expansion values
                List<double> widthValue = new List<double>();

                // make the width expansion values the width of the path plus the 1-sigma values
                for (int i = laneModelZeroPoint.Index; i < laneModelZeroPoint.Index+centerLine.Count; i++) {
                    widthValue.Add(laneModel.Width/2.0 + Math.Sqrt(laneModel.LaneYVariance[i]));
                }

                // now figure out how to add the rndf path
                // get the projection of the lane model end point on the rndf path
                LinePath.PointOnPath rndfPathStartPoint = rndfPath.GetClosestPoint(laneModelEndPoint.Location);

                // if the closest point is past the end of rndf path, then we don't want to tack anything on
                if (rndfPathStartPoint != rndfPath.EndPoint) {
                    // get the last segment of the new center line
                    Coordinates centerLineEndSegmentVec = centerLine.EndSegment.UnitVector;
                    // get the last point of the new center line
                    Coordinates laneModelEndLoc = laneModelEndPoint.Location;

                    // now figure out the distance to the next waypoint
                    LinePath.PointOnPath rndfNextPoint = new LinePath.PointOnPath();

                    // figure out if we're ending at a waypoint or not
                    if (endAtWaypoint) {
                        rndfNextPoint = rndfPath.GetPointOnPath(rndfPathStartPoint.Index+1);

                        // if the distance from the start point to the next point is less than rndf_dist_min, then
                        // use the waypont after
                        double dist = rndfPath.DistanceBetween(rndfPathStartPoint, rndfNextPoint);

                        if (dist < rndf_dist_min) {
                            if (rndfPathStartPoint.Index < rndfPath.Count-2) {
                                rndfNextPoint = rndfPath.GetPointOnPath(rndfPathStartPoint.Index + 2);
                            }
                            else if (rndfPath.DistanceBetween(rndfPathStartPoint, rndfPath.EndPoint) < rndf_dist_min) {
                                rndfNextPoint = LinePath.PointOnPath.Invalid;
                            }
                            else {
                                rndfNextPoint = rndfPath.AdvancePoint(rndfPathStartPoint, rndf_dist_min*2);
                            }
                        }
                    }
                    else {
                        // track the last angle we had
                        double lastAngle = double.NaN;

                        // walk down the rndf path until we find a valid point
                        for (double dist = rndf_dist_min; dist <= rndf_dist_max; dist += rndf_dist_step) {
                            // advance from the start point by dist
                            double distTemp = dist;
                            rndfNextPoint = rndfPath.AdvancePoint(rndfPathStartPoint, ref distTemp);

                            // if the distTemp is > 0, then we're past the end of the path
                            if (distTemp > 0) {
                                // if we're immediately past the end, we don't want to tack anything on
                                if (dist == rndf_dist_min) {
                                    rndfNextPoint = LinePath.PointOnPath.Invalid;
                                }

                                break;
                            }

                            // check the angle made by the last segment of center line and the segment
                            // formed between the end point of the center line and this new point
                            double angle = Math.Acos(centerLineEndSegmentVec.Dot((rndfNextPoint.Location-laneModelEndLoc).Normalize()));

                            // check if the angle satisfies the threshold or we're increasing the angle
                            if (Math.Abs(angle) < rndf_angle_threshold || (!double.IsNaN(lastAngle) && angle > lastAngle)) {
                                // break out of the loop, we're done searching
                                break;
                            }

                            lastAngle = angle;
                        }
                    }

                    // tack on the rndf starting at next point going to the end
                    if (rndfNextPoint.Valid) {
                        LinePath subPath = rndfPath.SubPath(rndfNextPoint, rndfPath.EndPoint);
                        centerLine.AddRange(subPath);

                        // insert the lane model end point into the sub path
                        subPath.Insert(0, laneModelEndLoc);

                        // get the angles
                        List<Pair<int, double>> angles = subPath.GetIntersectionAngles(0, subPath.Count-1);

                        // add the width of the path inflated by the angles
                        for (int i = 0; i < angles.Count; i++) {
                            // calculate the width expansion factor
                            // 90 deg, 3x width
                            // 45 deg, 1.5x width
                            // 0 deg, 1x width
                            double widthFactor = Math.Pow(angles[i].Right/(Math.PI/2.0), 2)*2 + 1;

                            // add the width value
                            widthValue.Add(widthFactor*laneModel.Width/2);
                        }

                        // add the final width
                        widthValue.Add(laneModel.Width/2);
                    }

                    // set the rndf path start point to be the point we used
                    rndfPathStartPoint = rndfNextPoint;
                }

                // for now, calculate the left and right bounds the same way we do for the path lane model
                // TODO: figure out if we want to do this more intelligently using knowledge of the lane model uncertainty
                LinePath leftBound = centerLine.ShiftLateral(widthValue.ToArray());
                // get the next shifts
                for (int i = 0; i < widthValue.Count; i++) { widthValue[i] = -widthValue[i]; }
                LinePath rightBound = centerLine.ShiftLateral(widthValue.ToArray());

                // build the final lane model
                finalLaneModel = new CombinedLaneModel(centerLine, leftBound, rightBound, laneModel.Width, rndfPathTimestamp);
            }

            SendLaneModelToUI(finalLaneModel, rndfPathTimestamp);

            // output the fit result
            return finalLaneModel;
        }
Example #25
0
        public static bool TestBlockage(IList<Polygon> obstaclePolygons, LinePath leftBound, LinePath rightBound, double expandDist, double trackWidth)
        {
            try
            {
                Circle robotCircle = new Circle(expandDist, Vector2.Zero);
                Polygon robotPoly = robotCircle.ToPolygon(24);

                List<BlockageData> obstacles = new List<BlockageData>(obstaclePolygons.Count);

                foreach (Polygon poly in obstaclePolygons)
                {
                    Polygon convolvedPoly = null;
                    try
                    {
                        convolvedPoly = Polygon.ConvexMinkowskiConvolution(robotPoly, poly);
                    }
                    catch (Exception)
                    {
                        // minkowski convolution failed, just expand that shit with the gaheezy inflate method
                        convolvedPoly = poly.Inflate(expandDist);
                    }

                    // add the entry to the obstacle collection
                    BlockageData data = new BlockageData(convolvedPoly);
                    obstacles.Add(data);
                }

                // shrink in the lanes by a half robot width
                leftBound = leftBound.ShiftLateral(-trackWidth / 2.0);
                rightBound = rightBound.ShiftLateral(-trackWidth / 2.0);

                Queue<BlockageData> testQueue = new Queue<BlockageData>();

                foreach (BlockageData obs in obstacles)
                {
                    if (obs.convolvedPolygon.DoesIntersect(leftBound))
                    {
                        // check if this hits the right bound
                        if (obs.convolvedPolygon.DoesIntersect(rightBound))
                        {
                            // this extends across the entire lane, the segment is blocked
                            return true;
                        }
                        else
                        {
                            testQueue.Enqueue(obs);
                            obs.searchMark = true;
                        }
                    }
                }

                while (testQueue.Count > 0)
                {
                    BlockageData obs = testQueue.Dequeue();

                    foreach (BlockageData neighbor in obstacles)
                    {
                        if (!neighbor.searchMark && Polygon.TestConvexIntersection(obs.convolvedPolygon, neighbor.convolvedPolygon))
                        {
                            if (neighbor.convolvedPolygon.DoesIntersect(rightBound))
                                return true;

                            testQueue.Enqueue(neighbor);
                            neighbor.searchMark = true;
                        }
                    }
                }

                return false;
            }
            catch (Exception) { }

            return false;
        }
        /// <summary>
        /// Plans what maneuer we should take next
        /// </summary>
        /// <param name="planningState"></param>
        /// <param name="navigationalPlan"></param>
        /// <param name="vehicleState"></param>
        /// <param name="vehicles"></param>
        /// <param name="obstacles"></param>
        /// <param name="blockage"></param>
        /// <returns></returns>
        public Maneuver Plan(IState planningState, INavigationalPlan navigationalPlan, VehicleState vehicleState,
                             SceneEstimatorTrackedClusterCollection vehicles, SceneEstimatorUntrackedClusterCollection obstacles, List <ITacticalBlockage> blockages)
        {
            #region Waiting At Intersection Exit

            if (planningState is WaitingAtIntersectionExitState)
            {
                // state
                WaitingAtIntersectionExitState waies = (WaitingAtIntersectionExitState)planningState;

                // get intersection plan
                IntersectionPlan ip = (IntersectionPlan)navigationalPlan;

                // nullify turn reasoning
                this.TurnReasoning = null;

                #region Intersection Monitor Updates

                // check correct intersection monitor
                if (CoreCommon.RoadNetwork.IntersectionLookup.ContainsKey(waies.exitWaypoint.AreaSubtypeWaypointId) &&
                    (IntersectionTactical.IntersectionMonitor == null ||
                     !IntersectionTactical.IntersectionMonitor.OurMonitor.Waypoint.Equals(waies.exitWaypoint)))
                {
                    // create new intersection monitor
                    IntersectionTactical.IntersectionMonitor = new IntersectionMonitor(
                        waies.exitWaypoint,
                        CoreCommon.RoadNetwork.IntersectionLookup[waies.exitWaypoint.AreaSubtypeWaypointId],
                        vehicleState,
                        ip.BestOption);
                }

                // update if exists
                if (IntersectionTactical.IntersectionMonitor != null)
                {
                    // update monitor
                    IntersectionTactical.IntersectionMonitor.Update(vehicleState);

                    // print current
                    ArbiterOutput.Output(IntersectionTactical.IntersectionMonitor.IntersectionStateString());
                }

                #endregion

                #region Desired Behavior

                // get best option from previously saved
                IConnectAreaWaypoints icaw = null;

                if (waies.desired != null)
                {
                    ArbiterInterconnect tmpInterconnect = waies.desired;
                    if (waies.desired.InitialGeneric is ArbiterWaypoint)
                    {
                        ArbiterWaypoint init = (ArbiterWaypoint)waies.desired.InitialGeneric;
                        if (init.NextPartition != null && init.NextPartition.Final.Equals(tmpInterconnect.FinalGeneric))
                        {
                            icaw = init.NextPartition;
                        }
                        else
                        {
                            icaw = waies.desired;
                        }
                    }
                    else
                    {
                        icaw = waies.desired;
                    }
                }
                else
                {
                    icaw          = ip.BestOption;
                    waies.desired = icaw.ToInterconnect;
                }

                #endregion

                #region Turn Feasibility Reasoning

                // check uturn
                if (waies.desired.TurnDirection == ArbiterTurnDirection.UTurn)
                {
                    waies.turnTestState = TurnTestState.Completed;
                }

                // check already determined feasible
                if (waies.turnTestState == TurnTestState.Unknown ||
                    waies.turnTestState == TurnTestState.Failed)
                {
                    #region Determine Behavior to Accomplish Turn

                    // get default turn behavior
                    TurnBehavior testTurnBehavior = this.DefaultTurnBehavior(icaw);

                    // set saudi decorator
                    if (waies.saudi != SAUDILevel.None)
                    {
                        testTurnBehavior.Decorators.Add(new ShutUpAndDoItDecorator(waies.saudi));
                    }

                    // set to ignore all vehicles
                    testTurnBehavior.VehiclesToIgnore = new List <int>(new int[] { -1 });

                    #endregion

                    #region Check Turn Feasible

                    // check if we have completed
                    CompletionReport turnCompletionReport;
                    bool             completedTest = CoreCommon.Communications.TestExecute(testTurnBehavior, out turnCompletionReport);        //CoreCommon.Communications.AsynchronousTestHasCompleted(testTurnBehavior, out turnCompletionReport, true);

                    // if we have completed the test
                    if (completedTest || ((TrajectoryBlockedReport)turnCompletionReport).BlockageType != BlockageType.Dynamic)
                    {
                        #region Can Complete

                        // check success
                        if (turnCompletionReport.Result == CompletionResult.Success)
                        {
                            // set completion state of the turn
                            waies.turnTestState = TurnTestState.Completed;
                        }

                        #endregion

                        #region No Saudi Level, Found Initial Blockage

                        // otherwise we cannot do the turn, check if saudi is still none
                        else if (waies.saudi == SAUDILevel.None)
                        {
                            // notify
                            ArbiterOutput.Output("Increased Saudi Level of Turn to L1");

                            // up the saudi level, set as turn failed and no other option
                            waies.saudi         = SAUDILevel.L1;
                            waies.turnTestState = TurnTestState.Failed;
                        }

                        #endregion

                        #region Already at L1 Saudi

                        else if (waies.saudi == SAUDILevel.L1)
                        {
                            // notify
                            ArbiterOutput.Output("Turn with Saudi L1 Level failed");

                            // get an intersection plan without this interconnect
                            IntersectionPlan testPlan = CoreCommon.Navigation.PlanIntersectionWithoutInterconnect(
                                waies.exitWaypoint,
                                CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId],
                                waies.desired);

                            // check that the plan exists
                            if (!testPlan.BestOption.ToInterconnect.Equals(waies.desired) &&
                                testPlan.BestRouteTime < double.MaxValue - 1.0)
                            {
                                // get the desired interconnect
                                ArbiterInterconnect reset = testPlan.BestOption.ToInterconnect;

                                #region Check that the reset interconnect is feasible

                                // test the reset interconnect
                                TurnBehavior testResetTurnBehavior = this.DefaultTurnBehavior(reset);

                                // set to ignore all vehicles
                                testResetTurnBehavior.VehiclesToIgnore = new List <int>(new int[] { -1 });

                                // check if we have completed
                                CompletionReport turnResetCompletionReport;
                                bool             completedResetTest = CoreCommon.Communications.TestExecute(testResetTurnBehavior, out turnResetCompletionReport);

                                // check to see if this is feasible
                                if (completedResetTest && turnResetCompletionReport is SuccessCompletionReport && reset.Blockage.ProbabilityExists < 0.95)
                                {
                                    // notify
                                    ArbiterOutput.Output("Found clear interconnect: " + reset.ToString() + " adding blockage to current interconnect: " + waies.desired.ToString());

                                    // set the interconnect as being blocked
                                    CoreCommon.Navigation.AddInterconnectBlockage(waies.desired);

                                    // reset all
                                    waies.desired       = reset;
                                    waies.turnTestState = TurnTestState.Completed;
                                    waies.saudi         = SAUDILevel.None;
                                    waies.useTurnBounds = true;
                                    IntersectionMonitor.ResetDesired(reset);
                                }

                                #endregion

                                #region No Lane Bounds

                                // otherwise try without lane bounds
                                else
                                {
                                    // notify
                                    ArbiterOutput.Output("Had to fallout to using no turn bounds");

                                    // up the saudi level, set as turn failed and no other option
                                    waies.saudi         = SAUDILevel.L1;
                                    waies.turnTestState = TurnTestState.Completed;
                                    waies.useTurnBounds = false;
                                }

                                #endregion
                            }

                            #region No Lane Bounds

                            // otherwise try without lane bounds
                            else
                            {
                                // up the saudi level, set as turn failed and no other option
                                waies.saudi         = SAUDILevel.L1;
                                waies.turnTestState = TurnTestState.Unknown;
                                waies.useTurnBounds = false;
                            }

                            #endregion
                        }

                        #endregion

                        // want to reset ourselves
                        return(new Maneuver(new HoldBrakeBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp));
                    }

                    #endregion
                }

                #endregion

                #region Entry Monitor Blocked

                // checks the entry monitor vehicle for failure
                if (IntersectionMonitor != null && IntersectionMonitor.EntryAreaMonitor != null &&
                    IntersectionMonitor.EntryAreaMonitor.Vehicle != null && IntersectionMonitor.EntryAreaMonitor.Failed)
                {
                    ArbiterOutput.Output("Entry area blocked");

                    // get an intersection plan without this interconnect
                    IntersectionPlan testPlan = CoreCommon.Navigation.PlanIntersectionWithoutInterconnect(
                        waies.exitWaypoint,
                        CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId],
                        waies.desired,
                        true);

                    // check that the plan exists
                    if (!testPlan.BestOption.ToInterconnect.Equals(waies.desired) &&
                        testPlan.BestRouteTime < double.MaxValue - 1.0)
                    {
                        // get the desired interconnect
                        ArbiterInterconnect reset = testPlan.BestOption.ToInterconnect;

                        #region Check that the reset interconnect is feasible

                        // test the reset interconnect
                        TurnBehavior testResetTurnBehavior = this.DefaultTurnBehavior(reset);

                        // set to ignore all vehicles
                        testResetTurnBehavior.VehiclesToIgnore = new List <int>(new int[] { -1 });

                        // check if we have completed
                        CompletionReport turnResetCompletionReport;
                        bool             completedResetTest = CoreCommon.Communications.TestExecute(testResetTurnBehavior, out turnResetCompletionReport);

                        // check to see if this is feasible
                        if (reset.TurnDirection == ArbiterTurnDirection.UTurn || (completedResetTest && turnResetCompletionReport is SuccessCompletionReport && reset.Blockage.ProbabilityExists < 0.95))
                        {
                            // notify
                            ArbiterOutput.Output("Found clear interconnect: " + reset.ToString() + " adding blockage to all possible turns into final");

                            // set all the interconnects to the final as being blocked
                            if (((ITraversableWaypoint)waies.desired.FinalGeneric).IsEntry)
                            {
                                foreach (ArbiterInterconnect toBlock in ((ITraversableWaypoint)waies.desired.FinalGeneric).Entries)
                                {
                                    CoreCommon.Navigation.AddInterconnectBlockage(toBlock);
                                }
                            }

                            // check if exists previous partition to block
                            if (waies.desired.FinalGeneric is ArbiterWaypoint)
                            {
                                ArbiterWaypoint finWaypoint = (ArbiterWaypoint)waies.desired.FinalGeneric;
                                if (finWaypoint.PreviousPartition != null)
                                {
                                    CoreCommon.Navigation.AddBlockage(finWaypoint.PreviousPartition, finWaypoint.Position, false);
                                }
                            }

                            // reset all
                            waies.desired       = reset;
                            waies.turnTestState = TurnTestState.Completed;
                            waies.saudi         = SAUDILevel.None;
                            waies.useTurnBounds = true;
                            IntersectionMonitor.ResetDesired(reset);

                            // want to reset ourselves
                            return(new Maneuver(new HoldBrakeBehavior(), CoreCommon.CorePlanningState, TurnDecorators.NoDecorators, vehicleState.Timestamp));
                        }

                        #endregion
                    }
                    else
                    {
                        ArbiterOutput.Output("Entry area blocked, but no otehr valid route found");
                    }
                }

                #endregion

                // check if can traverse
                if (IntersectionTactical.IntersectionMonitor == null || IntersectionTactical.IntersectionMonitor.CanTraverse(icaw, vehicleState))
                {
                    #region If can traverse the intersection

                    // quick check not interconnect
                    if (!(icaw is ArbiterInterconnect))
                    {
                        icaw = icaw.ToInterconnect;
                    }

                    // get interconnect
                    ArbiterInterconnect ai = (ArbiterInterconnect)icaw;

                    // clear all old completion reports
                    CoreCommon.Communications.ClearCompletionReports();

                    // check if uturn
                    if (ai.InitialGeneric is ArbiterWaypoint && ai.FinalGeneric is ArbiterWaypoint && ai.TurnDirection == ArbiterTurnDirection.UTurn)
                    {
                        // go into turn
                        List <ArbiterLane> involvedLanes = new List <ArbiterLane>();
                        involvedLanes.Add(((ArbiterWaypoint)ai.InitialGeneric).Lane);
                        involvedLanes.Add(((ArbiterWaypoint)ai.FinalGeneric).Lane);
                        uTurnState nextState = new uTurnState(((ArbiterWaypoint)ai.FinalGeneric).Lane,
                                                              IntersectionToolkit.uTurnBounds(vehicleState, involvedLanes));
                        nextState.Interconnect = ai;

                        // hold brake
                        Behavior b = new HoldBrakeBehavior();

                        // return maneuver
                        return(new Maneuver(b, nextState, nextState.DefaultStateDecorators, vehicleState.Timestamp));
                    }
                    else
                    {
                        if (ai.FinalGeneric is ArbiterWaypoint)
                        {
                            ArbiterWaypoint finalWaypoint = (ArbiterWaypoint)ai.FinalGeneric;

                            // get turn params
                            LinePath finalPath;
                            LineList leftLL;
                            LineList rightLL;
                            IntersectionToolkit.TurnInfo(finalWaypoint, out finalPath, out leftLL, out rightLL);

                            // go into turn
                            IState nextState = new TurnState(ai, ai.TurnDirection, finalWaypoint.Lane, finalPath, leftLL, rightLL, new ScalarSpeedCommand(2.5), waies.saudi, waies.useTurnBounds);

                            // hold brake
                            Behavior b = new HoldBrakeBehavior();

                            // return maneuver
                            return(new Maneuver(b, nextState, nextState.DefaultStateDecorators, vehicleState.Timestamp));
                        }
                        else
                        {
                            // final perimeter waypoint
                            ArbiterPerimeterWaypoint apw = (ArbiterPerimeterWaypoint)ai.FinalGeneric;

                            // get turn params
                            LinePath finalPath;
                            LineList leftLL;
                            LineList rightLL;
                            IntersectionToolkit.ZoneTurnInfo(ai, apw, out finalPath, out leftLL, out rightLL);

                            // go into turn
                            IState nextState = new TurnState(ai, ai.TurnDirection, null, finalPath, leftLL, rightLL, new ScalarSpeedCommand(2.5), waies.saudi, waies.useTurnBounds);

                            // hold brake
                            Behavior b = new HoldBrakeBehavior();

                            // return maneuver
                            return(new Maneuver(b, nextState, nextState.DefaultStateDecorators, vehicleState.Timestamp));
                        }
                    }

                    #endregion
                }
                // otherwise need to wait
                else
                {
                    IState next = waies;
                    return(new Maneuver(new HoldBrakeBehavior(), next, next.DefaultStateDecorators, vehicleState.Timestamp));
                }
            }

            #endregion

            #region Stopping At Exit

            else if (planningState is StoppingAtExitState)
            {
                // cast to exit stopping
                StoppingAtExitState saes = (StoppingAtExitState)planningState;
                saes.currentPosition = vehicleState.Front;

                // get intersection plan
                IntersectionPlan ip = (IntersectionPlan)navigationalPlan;

                // if has an intersection
                if (CoreCommon.RoadNetwork.IntersectionLookup.ContainsKey(saes.waypoint.AreaSubtypeWaypointId))
                {
                    // create new intersection monitor
                    IntersectionTactical.IntersectionMonitor = new IntersectionMonitor(
                        saes.waypoint,
                        CoreCommon.RoadNetwork.IntersectionLookup[saes.waypoint.AreaSubtypeWaypointId],
                        vehicleState,
                        ip.BestOption);

                    // update it
                    IntersectionTactical.IntersectionMonitor.Update(vehicleState);
                }
                else
                {
                    IntersectionTactical.IntersectionMonitor = null;
                }

                // otherwise update the stop parameters
                saes.currentPosition = vehicleState.Front;
                Behavior b = saes.Resume(vehicleState, CoreCommon.Communications.GetVehicleSpeed().Value);
                return(new Maneuver(b, saes, saes.DefaultStateDecorators, vehicleState.Timestamp));
            }

            #endregion

            #region In uTurn

            else if (planningState is uTurnState)
            {
                // get state
                uTurnState uts = (uTurnState)planningState;

                // check if in other lane
                if (CoreCommon.Communications.HasCompleted((new UTurnBehavior(null, null, null, null)).GetType()))
                {
                    // quick check
                    if (uts.Interconnect != null && uts.Interconnect.FinalGeneric is ArbiterWaypoint)
                    {
                        // get the closest partition to the new lane
                        ArbiterLanePartition alpClose = uts.TargetLane.GetClosestPartition(vehicleState.Front);

                        // waypoints
                        ArbiterWaypoint partitionInitial = alpClose.Initial;
                        ArbiterWaypoint uturnEnd         = (ArbiterWaypoint)uts.Interconnect.FinalGeneric;

                        // check initial past end
                        if (partitionInitial.WaypointId.Number > uturnEnd.WaypointId.Number)
                        {
                            // get waypoints inclusive
                            List <ArbiterWaypoint> inclusive = uts.TargetLane.WaypointsInclusive(uturnEnd, partitionInitial);
                            bool found = false;

                            // loop through
                            foreach (ArbiterWaypoint aw in inclusive)
                            {
                                if (!found && aw.WaypointId.Equals(CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId))
                                {
                                    // notiofy
                                    ArbiterOutput.Output("removed checkpoint: " + CoreCommon.Mission.MissionCheckpoints.Peek().CheckpointNumber.ToString() + " as passed over in uturn");

                                    // remove
                                    CoreCommon.Mission.MissionCheckpoints.Dequeue();

                                    // set found
                                    found = true;
                                }
                            }
                        }
                        // default check
                        else if (uts.Interconnect.FinalGeneric.Equals(CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId]))
                        {
                            // notiofy
                            ArbiterOutput.Output("removed checkpoint: " + CoreCommon.Mission.MissionCheckpoints.Peek().CheckpointNumber.ToString() + " as end of uturn");

                            // remove
                            CoreCommon.Mission.MissionCheckpoints.Dequeue();
                        }
                    }
                    // check if the uturn is for a blockage
                    else if (uts.Interconnect == null)
                    {
                        // get final lane
                        ArbiterLane targetLane = uts.TargetLane;

                        // check has opposing
                        if (targetLane.Way.Segment.Lanes.Count > 1)
                        {
                            // check the final checkpoint is in our lane
                            if (CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId.AreaSubtypeId.Equals(targetLane.LaneId))
                            {
                                // check that the final checkpoint is within the uturn polygon
                                if (uts.Polygon != null &&
                                    uts.Polygon.IsInside(CoreCommon.RoadNetwork.ArbiterWaypoints[CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId].Position))
                                {
                                    // remove the checkpoint
                                    ArbiterOutput.Output("Found checkpoint: " + CoreCommon.Mission.MissionCheckpoints.Peek().WaypointId.ToString() + " inside blockage uturn area, dequeuing");
                                    CoreCommon.Mission.MissionCheckpoints.Dequeue();
                                }
                            }
                        }
                    }

                    // stay in target lane
                    IState   nextState = new StayInLaneState(uts.TargetLane, new Probability(0.8, 0.2), true, CoreCommon.CorePlanningState);
                    Behavior b         = new StayInLaneBehavior(uts.TargetLane.LaneId, new ScalarSpeedCommand(2.0), new List <int>(), uts.TargetLane.LanePath(), uts.TargetLane.Width, uts.TargetLane.NumberOfLanesLeft(vehicleState.Front, true), uts.TargetLane.NumberOfLanesRight(vehicleState.Front, true));
                    return(new Maneuver(b, nextState, TurnDecorators.NoDecorators, vehicleState.Timestamp));
                }
                // otherwise continue uturn
                else
                {
                    // get polygon
                    Polygon p = uts.Polygon;

                    // add polygon to observable
                    CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(p, ArbiterInformationDisplayObjectType.uTurnPolygon));

                    // check the type of uturn
                    if (!uts.singleLaneUturn)
                    {
                        // get ending path
                        LinePath endingPath = uts.TargetLane.LanePath();

                        // next state is current
                        IState nextState = uts;

                        // behavior
                        Behavior b = new UTurnBehavior(p, endingPath, uts.TargetLane.LaneId, new ScalarSpeedCommand(2.0));

                        // maneuver
                        return(new Maneuver(b, nextState, null, vehicleState.Timestamp));
                    }
                    else
                    {
                        // get ending path
                        LinePath endingPath = uts.TargetLane.LanePath().Clone();
                        endingPath = endingPath.ShiftLateral(-2.0);                        //uts.TargetLane.Width);

                        // add polygon to observable
                        CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(endingPath, ArbiterInformationDisplayObjectType.leftBound));

                        // next state is current
                        IState nextState = uts;

                        // behavior
                        Behavior b = new UTurnBehavior(p, endingPath, uts.TargetLane.LaneId, new ScalarSpeedCommand(2.0));

                        // maneuver
                        return(new Maneuver(b, nextState, null, vehicleState.Timestamp));
                    }
                }
            }

            #endregion

            #region In Turn

            else if (planningState is TurnState)
            {
                // get state
                TurnState ts = (TurnState)planningState;

                // add bounds to observable
                if (ts.LeftBound != null && ts.RightBound != null)
                {
                    CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(ts.LeftBound, ArbiterInformationDisplayObjectType.leftBound));
                    CoreCommon.CurrentInformation.DisplayObjects.Add(new ArbiterInformationDisplayObject(ts.RightBound, ArbiterInformationDisplayObjectType.rightBound));
                }

                // create current turn reasoning
                if (this.TurnReasoning == null)
                {
                    this.TurnReasoning = new TurnReasoning(ts.Interconnect,
                                                           IntersectionTactical.IntersectionMonitor != null ? IntersectionTactical.IntersectionMonitor.EntryAreaMonitor : null);
                }

                // get primary maneuver
                Maneuver primary = this.TurnReasoning.PrimaryManeuver(vehicleState, blockages, ts);

                // get secondary maneuver
                Maneuver?secondary = this.TurnReasoning.SecondaryManeuver(vehicleState, (IntersectionPlan)navigationalPlan);

                // return the manevuer
                return(secondary.HasValue ? secondary.Value : primary);
            }

            #endregion

            #region Itnersection Startup

            else if (planningState is IntersectionStartupState)
            {
                // state and plan
                IntersectionStartupState iss = (IntersectionStartupState)planningState;
                IntersectionStartupPlan  isp = (IntersectionStartupPlan)navigationalPlan;

                // initial path
                LinePath vehiclePath = new LinePath(new Coordinates[] { vehicleState.Rear, vehicleState.Front });
                List <ITraversableWaypoint> feasibleEntries = new List <ITraversableWaypoint>();

                // vehicle polygon forward of us
                Polygon vehicleForward = vehicleState.ForwardPolygon;

                // best waypoint
                ITraversableWaypoint best = null;
                double bestCost           = Double.MaxValue;

                // given feasible choose best, no feasible choose random
                if (feasibleEntries.Count == 0)
                {
                    foreach (ITraversableWaypoint itw in iss.Intersection.AllEntries.Values)
                    {
                        if (vehicleForward.IsInside(itw.Position))
                        {
                            feasibleEntries.Add(itw);
                        }
                    }

                    if (feasibleEntries.Count == 0)
                    {
                        foreach (ITraversableWaypoint itw in iss.Intersection.AllEntries.Values)
                        {
                            feasibleEntries.Add(itw);
                        }
                    }
                }

                // get best
                foreach (ITraversableWaypoint itw in feasibleEntries)
                {
                    if (isp.NodeTimeCosts.ContainsKey(itw))
                    {
                        KeyValuePair <ITraversableWaypoint, double> lookup = new KeyValuePair <ITraversableWaypoint, double>(itw, isp.NodeTimeCosts[itw]);

                        if (best == null || lookup.Value < bestCost)
                        {
                            best     = lookup.Key;
                            bestCost = lookup.Value;
                        }
                    }
                }

                // get something going to this waypoint
                ArbiterInterconnect interconnect = null;
                if (best.IsEntry)
                {
                    ArbiterInterconnect closest = null;
                    double closestDistance      = double.MaxValue;

                    foreach (ArbiterInterconnect ai in best.Entries)
                    {
                        double dist = ai.InterconnectPath.GetClosestPoint(vehicleState.Front).Location.DistanceTo(vehicleState.Front);
                        if (closest == null || dist < closestDistance)
                        {
                            closest         = ai;
                            closestDistance = dist;
                        }
                    }

                    interconnect = closest;
                }
                else if (best is ArbiterWaypoint && ((ArbiterWaypoint)best).PreviousPartition != null)
                {
                    interconnect = ((ArbiterWaypoint)best).PreviousPartition.ToInterconnect;
                }

                // get state
                if (best is ArbiterWaypoint)
                {
                    // go to this turn state
                    LinePath finalPath;
                    LineList leftBound;
                    LineList rightBound;
                    IntersectionToolkit.TurnInfo((ArbiterWaypoint)best, out finalPath, out leftBound, out rightBound);
                    return(new Maneuver(new HoldBrakeBehavior(), new TurnState(interconnect, interconnect.TurnDirection, ((ArbiterWaypoint)best).Lane,
                                                                               finalPath, leftBound, rightBound, new ScalarSpeedCommand(2.0)), TurnDecorators.NoDecorators, vehicleState.Timestamp));
                }
                else
                {
                    // go to this turn state
                    LinePath finalPath;
                    LineList leftBound;
                    LineList rightBound;
                    IntersectionToolkit.ZoneTurnInfo(interconnect, (ArbiterPerimeterWaypoint)best, out finalPath, out leftBound, out rightBound);
                    return(new Maneuver(new HoldBrakeBehavior(), new TurnState(interconnect, interconnect.TurnDirection, null,
                                                                               finalPath, leftBound, rightBound, new ScalarSpeedCommand(2.0)), TurnDecorators.NoDecorators, vehicleState.Timestamp));
                }
            }

            #endregion

            #region Unknown

            else
            {
                throw new Exception("Unknown planning state in intersection tactical plan: " + planningState.ToString());
            }

            #endregion
        }