public static void Main() { modshogun.init_shogun_with_defaults(); double C = 0.9; double epsilon = 1e-3; Math.init_random(17); double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); LibLinear svm = new LibLinear(C, feats_train, labels); svm.set_liblinear_solver_type(LIBLINEAR_SOLVER_TYPE.L2R_L2LOSS_SVC_DUAL); svm.set_epsilon(epsilon); svm.set_bias_enabled(true); svm.train(); svm.set_features(feats_test); double[] out_labels = BinaryLabels.obtain_from_generic(svm.apply()).get_labels(); foreach(double item in out_labels) { Console.Write(item); } modshogun.exit_shogun(); }
static void Main(string[] argv) { modshogun.init_shogun_with_defaults(); double C = 0.9; double epsilon = 1e-3; org.shogun.Math.init_random(17); DoubleMatrix traindata_real = Load.load_numbers(".../data/fm_train_real.dat"); DoubleMatrix testdata_real = Load.load_numbers("../data/toy/fm_test_real.dat"); DoubleMatrix trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); Labels labels = new Labels(trainlab); LibLinear svm = new LibLinear(C, feats_train, labels); svm.set_liblinear_solver_type(L2R_L2LOSS_SVC_DUAL); svm.set_epsilon(epsilon); svm.set_bias_enabled(true); svm.train(); svm.set_features(feats_test); DoubleMatrix out_labels = svm.apply().get_labels(); Console.WriteLine(out_labels.ToString()); modshogun.exit_shogun(); }
public static void Main() { modshogun.init_shogun_with_defaults(); double C = 0.9; double epsilon = 1e-3; Math.init_random(17); double[,] traindata_real = Load.load_numbers("../data/fm_train_real.dat"); double[,] testdata_real = Load.load_numbers("../data/fm_test_real.dat"); double[] trainlab = Load.load_labels("../data/label_train_twoclass.dat"); RealFeatures feats_train = new RealFeatures(); feats_train.set_feature_matrix(traindata_real); RealFeatures feats_test = new RealFeatures(); feats_test.set_feature_matrix(testdata_real); BinaryLabels labels = new BinaryLabels(trainlab); LibLinear svm = new LibLinear(C, feats_train, labels); svm.set_liblinear_solver_type(LIBLINEAR_SOLVER_TYPE.L2R_L2LOSS_SVC_DUAL); svm.set_epsilon(epsilon); svm.set_bias_enabled(true); svm.train(); svm.set_features(feats_test); double[] out_labels = LabelsFactory.to_binary(svm.apply()).get_labels(); foreach (double item in out_labels) { Console.Write(item); } }
private void ClassifierList_MouseUp(object sender, MouseEventArgs e) { if (e.Button == System.Windows.Forms.MouseButtons.Right && SelectedItem != null) { Classifier classifier = SelectedItem as Classifier; if (classifier == null) { throw new NullReferenceException("Failed to cast classifier item from list"); } string updateWindowTitle = "Updating " + classifier.GetType().Name + "..."; if (classifier is LibLinear) { LibLinear liblinear = classifier as LibLinear; DynamicForm f = new DynamicForm("Set LibLinear parameters", DynamicForm.CloseButtons.OkCancel); f.AddCheckBox("Run feature selection:", ContentAlignment.MiddleRight, liblinear.RunFeatureSelection, "run_feature_selection"); f.AddDropDown("Positive weighting:", Enum.GetValues(typeof(LibLinear.PositiveClassWeighting)), liblinear.Weighting, "positive_weighting", true); if (f.ShowDialog() == DialogResult.OK) { liblinear.RunFeatureSelection = f.GetValue <bool>("run_feature_selection"); liblinear.Weighting = f.GetValue <LibLinear.PositiveClassWeighting>("positive_weighting"); } } else if (classifier is SvmRank) { SvmRank svmRank = classifier as SvmRank; DynamicForm f = new DynamicForm("Set SvmRank parameters", DynamicForm.CloseButtons.OkCancel); f.AddNumericUpdown("c:", (decimal)svmRank.C, 3, decimal.MinValue, decimal.MaxValue, (decimal)0.01, "c"); if (f.ShowDialog() == DialogResult.OK) { try { svmRank.C = Convert.ToSingle(f.GetValue <decimal>("c")); } catch (Exception ex) { MessageBox.Show("Invalid value for C: " + ex.Message); } } } else if (classifier is RandomForest) { RandomForest randomForest = classifier as RandomForest; DynamicForm f = new DynamicForm("Set RandomForest parameters", DynamicForm.CloseButtons.OkCancel); f.AddNumericUpdown("Number of trees:", randomForest.NumTrees, 0, 1, decimal.MaxValue, 1, "ntree"); if (f.ShowDialog() == DialogResult.OK) { randomForest.NumTrees = Convert.ToInt32(f.GetValue <decimal>("ntree")); } } else if (classifier is AdaBoost) { AdaBoost adaBoost = classifier as AdaBoost; DynamicForm f = new DynamicForm("Set AdaBoost parameters", DynamicForm.CloseButtons.OkCancel); f.AddNumericUpdown("Number of iterations:", adaBoost.Iterations, 0, 1, decimal.MaxValue, 1, "iterations"); if (f.ShowDialog() == DialogResult.OK) { adaBoost.Iterations = Convert.ToInt32(f.GetValue <decimal>("iterations")); } } } }