public void Rbm_ClassifierDeepTest() { var dataPath = System.IO.Path.Combine(Directory.GetCurrentDirectory(), @"RestrictedBolzmannMachine2\Data\rbm_twoclass_sample.csv"); LearningApi api = new LearningApi(this.getDescriptorForRbmTwoClassesClassifier(10)); // Initialize data provider api.UseCsvDataProvider(dataPath, ';', false, 1); api.UseDefaultDataMapper(); api.UseDeepRbm(0.01, 1000, new int[] { 10, 5, 2 }); RbmDeepScore score = api.Run() as RbmDeepScore; double[][] testData = new double[5][]; // // This test data contains two patterns. One is grouped at left and one at almost right. testData[0] = new double[] { 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }; testData[1] = new double[] { 1, 0, 1, 0, 0, 0, 0, 0, 0, 0 }; testData[2] = new double[] { 0, 0, 0, 0, 0, 1, 1, 1, 0, 0 }; testData[3] = new double[] { 0, 0, 0, 0, 0, 1, 0, 1, 0, 0 }; // This will be classified as third class. testData[4] = new double[] { 1, 1, 1, 0, 0, 1, 1, 1, 0, 0 }; RbmDeepResult result = api.Algorithm.Predict(testData, api.Context) as RbmDeepResult; // // 2 * BIT1 + BIT2 of [0] and [1] should be same. // We don't know how RBM will classiffy data. We only expect that // same or similar pattern of data will be assigned to the same class. // Note, we have here two classes (two hiddne nodes). // First and second data sample are of the same class. // Third and fourth are also of same class. See data. // Here we check first classs. Assert.True(result.Results[0].ToArray()[1].HiddenNodesPredictions[0] == result.Results[1].ToArray()[1].HiddenNodesPredictions[0] && result.Results[0].ToArray()[1].HiddenNodesPredictions[1] == result.Results[1].ToArray()[1].HiddenNodesPredictions[1]); // Here is test for second class. Assert.True(result.Results[2].ToArray()[1].HiddenNodesPredictions[0] == result.Results[3].ToArray()[1].HiddenNodesPredictions[0] && result.Results[2].ToArray()[1].HiddenNodesPredictions[1] == result.Results[3].ToArray()[1].HiddenNodesPredictions[1]); }
public void DigitRecognitionDeepTest(int iterations, double learningRate, int[] layers) { Debug.WriteLine($"{iterations}-{String.Join("", layers)}"); LearningApi api = new LearningApi(getDescriptorForRbmTwoClassesClassifier(4096)); // Initialize data provider // TODO: Describe Digit Dataset. api.UseCsvDataProvider(Path.Combine(Directory.GetCurrentDirectory(), @"RestrictedBolzmannMachine2\Data\DigitDataset.csv"), ',', false, 0); api.UseDefaultDataMapper(); api.UseDeepRbm(learningRate, iterations, layers); Stopwatch watch = new Stopwatch(); watch.Start(); RbmDeepScore score = api.Run() as RbmDeepScore; watch.Stop(); var testData = RbmHandwrittenDigitUnitTests.ReadData(Path.Combine(Directory.GetCurrentDirectory(), @"RestrictedBolzmannMachine2\Data\predictiondigitdata.csv")); var result = api.Algorithm.Predict(testData, api.Context) as RbmDeepResult; var accList = new double[result.Results.Count]; var predictions = new double[result.Results.Count][]; var predictedHiddenNodes = new double[result.Results.Count][]; var Time = watch.ElapsedMilliseconds / 1000; int i = 0; foreach (var item in result.Results) { predictions[i] = item.First().VisibleNodesPredictions; predictedHiddenNodes[i] = item.Last().HiddenNodesPredictions; accList[i] = testData[i].GetHammingDistance(predictions[i]); i++; } RbmHandwrittenDigitUnitTests.WriteDeepResult(iterations, layers, accList, Time * 1000, predictedHiddenNodes); /// write predicted hidden nodes....... RbmHandwrittenDigitUnitTests.WriteOutputMatrix(iterations, layers, predictions, testData); }
public void smileyTestDeepRbm(int iterations, double learningRate, int[] layers) { LearningApi api = new LearningApi(getDescriptorForRbm(1600)); // Initialize data provider api.UseCsvDataProvider(Path.Combine(Directory.GetCurrentDirectory(), @"RestrictedBolzmannMachine2\Data\Smiley.csv"), ',', false, 0); api.UseDefaultDataMapper(); api.UseDeepRbm(learningRate, iterations, layers); Stopwatch watch = new Stopwatch(); watch.Start(); RbmDeepScore score = api.Run() as RbmDeepScore; watch.Stop(); var testData = ReadData(Path.Combine(Directory.GetCurrentDirectory(), @"RestrictedBolzmannMachine2\Data\SmileyTest.csv")); var result = api.Algorithm.Predict(testData, api.Context) as RbmDeepResult; var accList = new double[result.Results.Count]; var predictions = new double[result.Results.Count][]; var predictedHiddenNodes = new double[result.Results.Count][]; var Time = watch.ElapsedMilliseconds / 1000; int i = 0; foreach (var item in result.Results) { predictions[i] = item.First().VisibleNodesPredictions; predictedHiddenNodes[i] = item.Last().HiddenNodesPredictions; accList[i] = testData[i].GetHammingDistance(predictions[i]); i++; } var ValTest = calcDelta(predictions, testData); var lossTest = ValTest / (layers.First()); Debug.WriteLine($"lossTest: {lossTest}"); WriteDeepResult(iterations, layers, accList, Time / 60.0, predictedHiddenNodes); /// write predicted hidden nodes....... WriteOutputMatrix(iterations, layers, predictions, testData); }
public void Rbm_ClassifierTest2() { var dataPath = System.IO.Path.Combine(Directory.GetCurrentDirectory(), @"RestrictedBolzmannMachine2\Data\rbm_sample2.csv"); LearningApi api = new LearningApi(this.getDescriptorForRbmTwoClassesClassifier(21)); // Initialize data provider api.UseCsvDataProvider(dataPath, ',', false, 1); api.UseDefaultDataMapper(); api.UseDeepRbm(0.2, 10000, new int[] { 21, 9, 6, 2 }); RbmResult score = api.Run() as RbmResult; var expectedResults = new Dictionary <int, List <double[]> >(); // All test data, which belong to the sam class. List <double[]> testListClass1 = new List <double[]>(); List <double[]> testListClass2 = new List <double[]>(); // // This test data contains two patterns. One is grouped at left and one at almost right. // testListClass1 contains class 1 // testListClass2 contains class 2 testListClass1.Add(new double[] { 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }); testListClass1.Add(new double[] { 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }); testListClass1.Add(new double[] { 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }); testListClass2.Add(new double[] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0 }); testListClass2.Add(new double[] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0 }); testListClass2.Add(new double[] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0 }); expectedResults.Add(1, testListClass1); expectedResults.Add(2, testListClass2); validateClassificationResult(api, expectedResults); }