Example #1
0
        public void GroundWaterTest()
        {
            WaterPacket GroundWater = new WaterPacket(1);

//      GroundWater.AddChemical(ChemicalFactory.Instance.GetChemical(ChemicalNames.Radon), 0.01);
            GroundWater.IDForComposition = 4;

            Lake Vedsted = LakeFactory.GetLake("Vedsted Sø");

            Vedsted.Depth      = 5;
            Vedsted.WaterLevel = 45.7;

            //Create and add a discharge boundary
            TimestampSeries Discharge = new TimestampSeries();

            Discharge.AddSiValue(new DateTime(2007, 3, 12), 6986 / TimeSpan.FromDays(365).TotalSeconds);
            Discharge.AddSiValue(new DateTime(2007, 4, 3), 5894 / TimeSpan.FromDays(365).TotalSeconds);
            Discharge.AddSiValue(new DateTime(2007, 4, 25), 1205 / TimeSpan.FromDays(365).TotalSeconds);
            Discharge.RelaxationFactor   = 1;
            Discharge.AllowExtrapolation = true;
            Assert.AreEqual(Discharge.GetValue(new DateTime(2007, 4, 25)), Discharge.GetValue(new DateTime(2007, 6, 25)), 0.0000001);
            SinkSourceBoundary Kilde = new SinkSourceBoundary(Discharge);

            Kilde.Name = "Small spring";
            Kilde.ID   = 3;
            Kilde.WaterSample.IDForComposition = 3;
            Vedsted.Sources.Add(Kilde);


            Vedsted.Output.LogAllChemicals = true;
            Vedsted.Output.LogComposition  = true;

            //Add to an engine
            Model Engine = new Model();

            Engine.Name = "Vedsted-opsætning";
            Engine._waterBodies.Add(Vedsted);

            //Set initial state
            WaterPacket InitialStateWater = new WaterPacket(1);

            InitialStateWater.IDForComposition = 1;
            DateTime Start = new DateTime(2007, 1, 1);
            DateTime End   = new DateTime(2007, 12, 31);

            Engine.SetState("Initial", Start, InitialStateWater);
            Engine.SimulationEndTime = End;
            Engine.TimeStep          = TimeSpan.FromDays(30);

            Engine.MoveInTime(End, TimeSpan.FromDays(30));
            Vedsted.Name = "Vedsted step 1";
            Engine.Save(testDataPath + Vedsted.Name + ".xml");
            Engine.RestoreState("Initial");

            //Create and add precipitation boundary
            TimespanSeries Precipitation = new TimespanSeries();

            Precipitation.ExtrapolationMethod = ExtrapolationMethods.RecycleYear;
            Precipitation.AllowExtrapolation  = true;
            double[] values = new double[] { 108, 83, 73, 52, 61, 86, 99, 101, 75, 108, 85, 101 };
            AddMonthlyValues(Precipitation, 2007, values);
            SinkSourceBoundary Precip = new SinkSourceBoundary(Precipitation);

            Precip.ContactGeometry = Vedsted.SurfaceArea;
            Precip.Name            = "Precipitation";
            Precip.ID = 2;
            Precip.WaterSample.IDForComposition = 2;
            Vedsted.Precipitation.Add(Precip);

            //Create and add evaporation boundary
            TimespanSeries Evaporation = new TimespanSeries();

            Evaporation.AllowExtrapolation  = true;
            Evaporation.ExtrapolationMethod = ExtrapolationMethods.RecycleYear;
            double[] values2 = new double[] { 4, 11, 34, 66, 110, 118, 122, 103, 61, 26, 7, 1 };
            AddMonthlyValues(Evaporation, 2007, values2);
            EvaporationRateBoundary eva = new EvaporationRateBoundary(Evaporation);

            eva.ContactGeometry = Vedsted.SurfaceArea;
            eva.Name            = "Evapo";

            Vedsted.EvaporationBoundaries.Add(eva);

            Engine.MoveInTime(End, TimeSpan.FromDays(30));
            Vedsted.Name = "Vedsted step 2";
            Engine.Save(testDataPath + Vedsted.Name + ".xml");
            Engine.RestoreState("Initial");


            //To be used by other tests
            Engine.Save(testDataPath + "VedstedNoGroundwater.xml");

            XYPolygon ContactArea = XYPolygon.GetSquare(Vedsted.Area / 10);

            #region Groundwater boundaries
            //Add groundwater boundaries
            GroundWaterBoundary B1 = new GroundWaterBoundary(Vedsted, 1.3e-4, 1, 45.47, ContactArea);
            B1.Name        = "B1";
            B1.ID          = 4;
            B1.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B1);

            GroundWaterBoundary B2 = new GroundWaterBoundary(Vedsted, 1e-6, 1, 44.96, ContactArea);
            B2.Name        = "B2";
            B2.ID          = 5;
            B2.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B2);

            GroundWaterBoundary B3 = new GroundWaterBoundary(Vedsted, 2e-6, 1, 44.63, ContactArea);
            B3.Name        = "B3";
            B3.ID          = 6;
            B3.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B3);

            GroundWaterBoundary B4 = new GroundWaterBoundary(Vedsted, 4.9e-7, 1, 44.75, ContactArea);
            B4.Name        = "B4";
            B4.ID          = 7;
            B4.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B4);

            GroundWaterBoundary B5 = new GroundWaterBoundary(Vedsted, 1.5e-8, 1, 44.27, ContactArea);
            B5.Name        = "B5";
            B5.ID          = 8;
            B5.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B5);

            GroundWaterBoundary B6 = new GroundWaterBoundary(Vedsted, 1.5e-8, 1, 44.16, ContactArea);
            B6.Name        = "B6";
            B6.ID          = 9;
            B6.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B6);

            GroundWaterBoundary B7 = new GroundWaterBoundary(Vedsted, 1.1e-6, 1, 45.15, ContactArea);
            B7.Name        = "B7";
            B7.ID          = 10;
            B7.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B7);

            GroundWaterBoundary B8 = new GroundWaterBoundary(Vedsted, 1.1e-6, 1, 44.54, ContactArea);
            B8.Name        = "B8";
            B8.ID          = 11;
            B8.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B8);

            GroundWaterBoundary B9 = new GroundWaterBoundary(Vedsted, 2.1e-8, 1, 45.4, ContactArea);
            B9.Name        = "B9";
            B9.ID          = 12;
            B9.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B9);

            GroundWaterBoundary B10 = new GroundWaterBoundary(Vedsted, 3.5e-6, 1, 45.16, ContactArea);
            B10.Name        = "B10";
            B10.ID          = 13;
            B10.WaterSample = GroundWater;
            Vedsted.GroundwaterBoundaries.Add(B10);

            #endregion

            Engine.MoveInTime(End, TimeSpan.FromDays(30));
            Vedsted.Name = "Vedsted step 3";
            Engine.Save(testDataPath + Vedsted.Name + ".xml");
            Engine.RestoreState("Initial");

            Vedsted.GroundwaterBoundaries.Clear();

            var cl = ChemicalFactory.Instance.GetChemical(ChemicalNames.IsotopeFraction);

            GroundWaterBoundary Inflow = new GroundWaterBoundary(Vedsted, 1e-7, 1, 46.7, XYPolygon.GetSquare(Vedsted.Area / 2));
            Inflow.Name = "Inflow";
            GroundWater.AddChemical(cl, 3);
            Inflow.WaterSample = GroundWater;

            Vedsted.RealData.AddChemicalTimeSeries(cl);
            Vedsted.RealData.ChemicalConcentrations[cl].AddSiValue(new DateTime(2007, 8, 7), 2.5);

            ((WaterPacket)InitialStateWater).AddChemical(cl, 2.5 * InitialStateWater.Volume);
            Engine.SetState("Initial", Start, InitialStateWater);

            GroundWaterBoundary Outflow = new GroundWaterBoundary(Vedsted, 1e-7, 1, 44.7, XYPolygon.GetSquare(Vedsted.Area / 2));
            Outflow.Name = "Outflow";

            Vedsted.GroundwaterBoundaries.Add(Inflow);
            Vedsted.GroundwaterBoundaries.Add(Outflow);

            Engine.MoveInTime(End, TimeSpan.FromDays(30));
            Vedsted.Name = "Vedsted step 4";
            Engine.Save(testDataPath + Vedsted.Name + ".xml");
            Engine.RestoreState("Initial");



            #region ////Add seepage meter boundaries
            //GroundWaterBoundary S1 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(S1);
            //GroundWaterBoundary S2 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(S2);
            //GroundWaterBoundary S3 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(S3);
            //GroundWaterBoundary I1 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(I1);
            //GroundWaterBoundary I2 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(I2);
            //GroundWaterBoundary I3 = new GroundWaterBoundary(Vedsted, 4e-5, 1, 2, 46);
            //Vedsted.SinkSources.Add(I3);

            #endregion


            Assert.AreEqual(Evaporation.EndTime, Engine.MaximumEndTime);
            Engine.Save(testDataPath + "Vedsted.xml");

            Engine.MoveInTime(End, TimeSpan.FromDays(30));

            double outflow2 = Vedsted.Output.Outflow.GetValue(Start, End.Subtract(TimeSpan.FromDays(5)));
            double evapo2   = Vedsted.Output.Evaporation.GetValue(Start, End.Subtract(TimeSpan.FromDays(5)));

            Engine.Save(testDataPath + "Vedsted2.xml");
        }
        public void TestMethod1()
        {
            Lake Vedsted = LakeFactory.GetLake("Vedsted Sø");

            Vedsted.Depth      = 5;
            Vedsted.WaterLevel = 45.7;


            //Create and add precipitation boundary
            TimespanSeries Precipitation = new TimespanSeries();

            double[] values = new double[] { 108, 83, 73, 52, 61, 86, 99, 101, 75, 108, 85, 101 };
            LakeVedsted.AddMonthlyValues(Precipitation, 2007, values);
            SinkSourceBoundary Precip = new SinkSourceBoundary(Precipitation);

            Precip.ContactGeometry = Vedsted.SurfaceArea;
            Vedsted.Sources.Add(Precip);

            //Create and add evaporation boundary
            TimespanSeries Evaporation = new TimespanSeries();

            double[] values2 = new double[] { 4, 11, 34, 66, 110, 118, 122, 103, 61, 26, 7, 1 };
            LakeVedsted.AddMonthlyValues(Evaporation, 2007, values2);
            EvaporationRateBoundary eva = new EvaporationRateBoundary(Evaporation);

            eva.ContactGeometry = Vedsted.SurfaceArea;
            Vedsted.EvaporationBoundaries.Add(eva);

            //Create and add a discharge boundary
            TimestampSeries Discharge = new TimestampSeries();

            Discharge.AddSiValue(new DateTime(2007, 3, 12), 6986 / TimeSpan.FromDays(365).TotalSeconds);
            Discharge.AddSiValue(new DateTime(2007, 4, 3), 5894 / TimeSpan.FromDays(365).TotalSeconds);
            Discharge.AddSiValue(new DateTime(2007, 4, 25), 1205 / TimeSpan.FromDays(365).TotalSeconds);
            Discharge.RelaxationFactor   = 1;
            Discharge.AllowExtrapolation = true;
            Assert.AreEqual(Discharge.GetValue(new DateTime(2007, 4, 25)), Discharge.GetValue(new DateTime(2007, 6, 25)), 0.0000001);
            SinkSourceBoundary Kilde = new SinkSourceBoundary(Discharge);

            Vedsted.Sources.Add(Kilde);

            //Add a groundwater boundary
            GroundWaterBoundary gwb = new GroundWaterBoundary(Vedsted, 1e-5, 1, 46, (XYPolygon)Vedsted.Geometry);

            DateTime Start = new DateTime(2007, 1, 1);

            //Add the chemicals
            Chemical cl = ChemicalFactory.Instance.GetChemical(ChemicalNames.Cl);

            //Tell the lake to log the chemicals
            Vedsted.Output.LogChemicalConcentration(ChemicalFactory.Instance.GetChemical(ChemicalNames.IsotopeFraction));
            Vedsted.Output.LogChemicalConcentration(cl);

            IsotopeWater Iw = new IsotopeWater(1);

            Iw.SetIsotopeRatio(10);
            Iw.AddChemical(cl, 0.1);
            Precip.WaterSample = Iw.DeepClone();

            //Evaporate some of the water to get realistic initial conditions
            Iw.Evaporate(Iw.Volume / 2);
            Vedsted.SetState("Initial", Start, Iw.DeepClone());
            Kilde.WaterSample = Iw.DeepClone();

            Iw.Evaporate(Iw.Volume / 2);
            gwb.WaterSample = Iw.DeepClone();

            //Add to an engine
            Model Engine = new Model();

            Engine.Name = "Vedsted-opsætning";
            Engine._waterBodies.Add(Vedsted);

            //Set initial state
            Engine.SetState("Initial", Start, new WaterPacket(1));

            Engine.Save(@"c:\temp\setup.xml");
        }
Example #3
0
        public void TestMethod1()
        {
            Lake Gjeller = LakeFactory.GetLake("Gjeller Sø");

            Gjeller.Depth      = 1.2;
            Gjeller.WaterLevel = 0.4;

            WaterPacket GjellerWater = new WaterPacket(1, 1);

            GjellerWater.AddChemical(ChemicalFactory.Instance.GetChemical(ChemicalNames.Cl), 1);

            TimeSeriesGroup climate = TimeSeriesGroupFactory.Create("climate.xts");

            foreach (var I in climate.Items)
            {
                I.ExtrapolationMethod = ExtrapolationMethods.RecycleYear;
                I.AllowExtrapolation  = true;
            }

            EvaporationRateBoundary evap = new EvaporationRateBoundary((TimespanSeries)climate.Items[1]);

            evap.ContactGeometry = Gjeller.Geometry;
            Gjeller.EvaporationBoundaries.Add(evap);

            SinkSourceBoundary precip = new SinkSourceBoundary(climate.Items[0]);

            precip.ContactGeometry = Gjeller.Geometry;
            Gjeller.Precipitation.Add(precip);
            precip.ID          = 2;
            precip.WaterSample = GjellerWater.DeepClone();
            precip.WaterSample.IDForComposition = precip.ID;;

            GroundWaterBoundary GWIN = new GroundWaterBoundary(Gjeller, 1e-5, 2, 0.45, XYPolygon.GetSquare(Gjeller.Area / 2));

            GWIN.WaterSample = GjellerWater.DeepClone();
            GWIN.ID          = 3;
            GWIN.WaterSample.IDForComposition = GWIN.ID;
            GWIN.Name = "Inflow";
            Gjeller.GroundwaterBoundaries.Add(GWIN);

            GroundWaterBoundary GWout = new GroundWaterBoundary(Gjeller, 1e-5, 2, 0.35, XYPolygon.GetSquare(Gjeller.Area / 2));

            GWout.Name = "Outflow";
            Gjeller.GroundwaterBoundaries.Add(GWout);


            TimespanSeries pumping = new TimespanSeries();

            pumping.AddSiValue(new DateTime(1990, 01, 01), new DateTime(2010, 01, 01), 0);
            pumping.AddSiValue(new DateTime(2010, 01, 01), new DateTime(2010, 05, 01), 0.05);
            pumping.AddSiValue(new DateTime(2010, 05, 01), DateTime.Now, 0);


            SinkSourceBoundary DrainageWater = new SinkSourceBoundary(pumping);

            DrainageWater.ID          = 4;
            DrainageWater.WaterSample = GjellerWater.DeepClone();
            DrainageWater.WaterSample.IDForComposition = DrainageWater.ID;
            DrainageWater.Name = "Indpumpet Drænvand";
            Gjeller.Sources.Add(DrainageWater);


            var tsg = TimeSeriesGroupFactory.Create(@"..\..\..\TestData\GjellerObservations.xts");

            foreach (var ts in tsg.Items)
            {
                Chemical c = new Chemical(ts.Name, 1);
                Gjeller.RealData.AddChemicalTimeSeries(c);
                Gjeller.RealData.ChemicalConcentrations[c] = (TimestampSeries)ts;
            }

            Model M = new Model();

            M._waterBodies.Add(Gjeller);
            Gjeller.Output.LogAllChemicals = true;
            Gjeller.Output.LogComposition  = true;

            M.SetState("Initial", new DateTime(1995, 1, 1), GjellerWater);


            M.MoveInTime(DateTime.Now, TimeSpan.FromDays(10));
            M.Save(@"..\..\..\TestData\Gjeller.xml");
        }
Example #4
0
        public void TestMethod1()
        {
            Lake Hampen = LakeFactory.GetLake("Hampen Sø");

            Hampen.Depth = 3.2e6 / 760000 / 1000;

            DateTime start = new DateTime(2008, 1, 1);
            DateTime end   = new DateTime(2008, 12, 31);

            Assert.AreEqual(Hampen.Area, 722200, 1);

            EvaporationRateBoundary er = new EvaporationRateBoundary(407.0 / 1000 / 365 / 86400);

            er.ContactGeometry = Hampen.Geometry;
            er.Name            = "Fordampning";
            Hampen.EvaporationBoundaries.Add(er);

            SourceBoundary pr = new SourceBoundary(901.0 / 1000 / 365 / 86400);

            pr.ContactGeometry = Hampen.Geometry;
            pr.Name            = "Nedbør";
            Hampen.Precipitation.Add(pr);

            SinkSourceBoundary outlet = new SinkSourceBoundary(-200.0 / 1000 / 365 / 86400);

            outlet.ContactGeometry = Hampen.Geometry;
            outlet.Name            = "Udløb";
            Hampen.Sinks.Add(outlet);

            GroundWaterBoundary gwb = new GroundWaterBoundary();

            gwb.FlowType  = GWType.Flow;
            gwb.Name      = "Ud";
            gwb.WaterFlow = new HydroNumerics.Time.Core.TimespanSeries("inflow", new DateTime(2008, 1, 1), 2, 1, HydroNumerics.Time.Core.TimestepUnit.Years, -294.0 / 1000 / 365 / 86400 * Hampen.Area);
            Hampen.GroundwaterBoundaries.Add(gwb);


            Model m = new Model();

            m._waterBodies.Add(Hampen);

            m.SetState("start", start, new WaterPacket(1));
            m.SimulationStartTime = start;
            m.SimulationEndTime   = end;
            m.MoveInTime(end, TimeSpan.FromDays(30));
            m.Save(@"..\..\..\TestData\Hampen1.xml");

            WaterPacket ChlorideWater = new WaterPacket(1);

            ChlorideWater.SetConcentration(ChemicalNames.Cl, 20);
            ChlorideWater.SetConcentration(ChemicalNames.IsotopeFraction, 4);
            ChlorideWater.SetConcentration(ChemicalNames.Nitrate, 0.2);
            ChlorideWater.SetConcentration(ChemicalNames.Phosphate, 0.02);

            m.SetState("start", start, ChlorideWater);
            Hampen.Output.LogAllChemicals = true;

            double gwinflow = 1000.0;


            gwb.WaterFlow = new HydroNumerics.Time.Core.TimespanSeries("inflow", new DateTime(2008, 1, 1), 2, 1, HydroNumerics.Time.Core.TimestepUnit.Years, -(294.0 + gwinflow) / 1000 / 365 / 86400 * Hampen.Area);

            GroundWaterBoundary gwbin = new GroundWaterBoundary();

            gwbin.FlowType  = GWType.Flow;
            gwbin.WaterFlow = new HydroNumerics.Time.Core.TimespanSeries("inflow", new DateTime(2008, 1, 1), 2, 1, HydroNumerics.Time.Core.TimestepUnit.Years, 0.955 * gwinflow / 1000 / 365 / 86400 * Hampen.Area);
            ChlorideWater.SetConcentration(ChemicalNames.Cl, 30);
            ChlorideWater.SetConcentration(ChemicalNames.IsotopeFraction, 8);
            ChlorideWater.SetConcentration(ChemicalNames.Nitrate, 1.6);
            ChlorideWater.SetConcentration(ChemicalNames.Phosphate, 0.017);
            gwbin.Name        = "Ind Skov";
            gwbin.WaterSample = ChlorideWater.DeepClone();
            Hampen.GroundwaterBoundaries.Add(gwbin);

            GroundWaterBoundary gwbin2 = new GroundWaterBoundary();

            gwbin2.FlowType  = GWType.Flow;
            gwbin2.WaterFlow = new HydroNumerics.Time.Core.TimespanSeries("inflow", new DateTime(2008, 1, 1), 2, 1, HydroNumerics.Time.Core.TimestepUnit.Years, 0.045 * gwinflow / 1000 / 365 / 86400 * Hampen.Area);
            ChlorideWater.SetConcentration(ChemicalNames.Nitrate, 65.3);
            gwbin2.Name        = "Ind Landbrug";
            gwbin2.WaterSample = ChlorideWater.DeepClone();

            Hampen.GroundwaterBoundaries.Add(gwbin2);
            ChlorideWater.SetConcentration(ChemicalNames.Cl, 10);
            ChlorideWater.SetConcentration(ChemicalNames.Phosphate, 0);
            ChlorideWater.SetConcentration(ChemicalNames.Nitrate, 1.7);
            pr.WaterSample = ChlorideWater.DeepClone();

            m.MoveInTime(end, TimeSpan.FromDays(30));
            m.Save(@"..\..\..\TestData\Hampen2.xml");
        }