Example #1
0
        /// <summary>
        ///   Implements the actual optimization algorithm. This
        ///   method should try to minimize the objective function.
        /// </summary>
        ///
        protected override bool Optimize()
        {
            if (LineSearch == Optimization.LineSearch.RegularWolfe ||
                LineSearch == Optimization.LineSearch.StrongWolfe)
            {
                if (wolfe <= ftol || 1.0 <= wolfe)
                {
                    throw OperationException("Wolfe tolerance must be between 'ParameterTolerance' and 1.", "LBFGSERR_INVALID_WOLFE");
                }
            }

            if (OrthantwiseC != 0.0 && linesearch != Optimization.LineSearch.RegularWolfe)
            {
                throw OperationException("Orthant-wise updates are only available with Regular Wolfe line search.",
                                         "LBFGSERR_INVALID_LINESEARCH");
            }

            var param = new lbfgs_parameter_t()
            {
                m                 = m,
                epsilon           = epsilon,
                past              = past,
                delta             = delta,
                max_iterations    = max_iterations,
                linesearch        = linesearch,
                max_linesearch    = max_linesearch,
                min_step          = min_step,
                max_step          = max_step,
                ftol              = ftol,
                wolfe             = wolfe,
                gtol              = gtol,
                xtol              = xtol,
                orthantwise_c     = orthantwise_c,
                orthantwise_start = orthantwise_start,
                orthantwise_end   = orthantwise_end,
            };

            LBFGS.Code ret = (LBFGS.Code)LBFGS.main(Solution, Function, Gradient, Progress, param);

            Status = (BroydenFletcherGoldfarbShannoStatus)ret;

            if (!Enum.IsDefined(typeof(BroydenFletcherGoldfarbShannoStatus), Status))
            {
                throw new InvalidOperationException("Unhandled return code: " + ret);
            }



            return(Status == BroydenFletcherGoldfarbShannoStatus.Success ||
                   Status == BroydenFletcherGoldfarbShannoStatus.AlreadyMinimized);
        }
Example #2
0
        public void CompareToSparse()
        {
            var dim   = 10;
            var lbfgs = new LBFGS(3);
            var x     = Vector.Zero(dim);

            x = lbfgs.Run(x, 1.0, f);
            Console.WriteLine(x);

            SparseVector y = SparseVector.Zero(dim);

            y = (SparseVector)lbfgs.Run(y, 1.0, f);
            Console.WriteLine(y);
            Assert.True(y.SparseCount == 2);
            Assert.True(y == x);

            SparseVector[] z = new SparseVector[2];
            z[0] = SparseVector.Zero(dim / 2);
            z[1] = SparseVector.Zero(dim / 2);
            var lbfgsa = new LBFGSArray(3);
            var result = lbfgsa.Run(z, 1.0, delegate(Vector[] o, ref Vector[] grad)
            {
                Vector gradx = Vector.Zero(2);
                double res   = f(Vector.FromArray(new double[] { o[0][0], o[1][0] }), ref gradx);
                if (grad != null)
                {
                    grad[0][0] = gradx[0];
                    grad[1][0] = gradx[1];
                }
                return(res);
            });

            Assert.True(MMath.AbsDiff(result[0][0], x[0]) < 1e-5);
            Assert.True(MMath.AbsDiff(result[1][0], x[1]) < 1e-5);
            Assert.True((result[0] as SparseVector).SparseCount == 1);
        }
Example #3
0
        private static void ShowEvaluation(int recordNum, ModelWriter feature_index, LBFGS lbfgs, int termNum, int itr, int[,] merr, int[] yfreq, double diff, DateTime startDT, long nonzero_feature_num, EncoderOptions args)
        {
            var ts = DateTime.Now - startDT;

            if (args.DebugLevel > 1)
            {
                for (var i = 0; i < feature_index.y_.Count; i++)
                {
                    var total_merr = 0;
                    var sdict      = new SortedDictionary <double, List <string> >();
                    for (var j = 0; j < feature_index.y_.Count; j++)
                    {
                        total_merr += merr[i, j];
                        var v = (double)merr[i, j] / (double)yfreq[i];
                        if (v > 0.0001)
                        {
                            if (sdict.ContainsKey(v) == false)
                            {
                                sdict.Add(v, new List <string>());
                            }
                            sdict[v].Add(feature_index.y_[j]);
                        }
                    }
                    var vet = (double)total_merr / (double)yfreq[i];
                    vet = vet * 100.0F;

                    Console.ForegroundColor = ConsoleColor.Green;
                    Console.Write("{0} ", feature_index.y_[i]);
                    Console.ResetColor();
                    Console.Write("[FR={0}, TE=", yfreq[i]);
                    Console.ForegroundColor = ConsoleColor.Yellow;
                    Console.Write("{0:0.00}%", vet);
                    Console.ResetColor();
                    Console.WriteLine("]");

                    var n = 0;
                    foreach (var pair in sdict.Reverse())
                    {
                        for (int index = 0; index < pair.Value.Count; index++)
                        {
                            var item = pair.Value[index];
                            n += item.Length + 1 + 7;
                            if (n > 80)
                            {
                                //only show data in one line, more data in tail will not be show.
                                break;
                            }
                            Console.Write("{0}:", item);
                            Console.ForegroundColor = ConsoleColor.Red;
                            Console.Write("{0:0.00}% ", pair.Key * 100);
                            Console.ResetColor();
                        }
                        if (n > 80)
                        {
                            break;
                        }
                    }
                    Console.WriteLine();
                }
            }

            var act_feature_rate = (double)(nonzero_feature_num) / (double)(feature_index.feature_size()) * 100.0;
            //Logger.WriteLine("iter={0} terr={1:0.00000} serr={2:0.00000} diff={3:0.000000} fsize={4}({5:0.00}% act)", itr, 1.0 * lbfgs.err / termNum, 1.0 * lbfgs.zeroone / recordNum, diff, feature_index.feature_size(), act_feature_rate);
            //Logger.WriteLine("Time span: {0}, Aver. time span per iter: {1}", ts, new TimeSpan(0, 0, (int)(ts.TotalSeconds / (itr + 1))));
        }
Example #4
0
        bool runCRF(EncoderTagger[] x, ModelWriter modelWriter, bool orthant, EncoderOptions args)
        {
            var old_obj  = double.MaxValue;
            var converge = 0;
            var lbfgs    = new LBFGS(args.ThreadsNum);

            lbfgs.expected = new double[modelWriter.feature_size() + 1];

            var processList    = new List <CRFEncoderThread>();
            var parallelOption = new ParallelOptions();

            parallelOption.MaxDegreeOfParallelism = args.ThreadsNum;

            //Initialize encoding threads
            for (var i = 0; i < args.ThreadsNum; i++)
            {
                var thread = new CRFEncoderThread();
                thread.start_i    = i;
                thread.thread_num = args.ThreadsNum;
                thread.x          = x;
                thread.lbfgs      = lbfgs;
                thread.Init();
                processList.Add(thread);
            }

            //Statistic term and result tags frequency
            var termNum = 0;

            int[] yfreq;
            yfreq = new int[modelWriter.y_.Count];
            for (int index = 0; index < x.Length; index++)
            {
                var tagger = x[index];
                termNum += tagger.word_num;
                for (var j = 0; j < tagger.word_num; j++)
                {
                    yfreq[tagger.answer_[j]]++;
                }
            }

            //Iterative training
            var startDT       = DateTime.Now;
            var dMinErrRecord = 1.0;

            for (var itr = 0; itr < args.MaxIteration; ++itr)
            {
                //Clear result container
                lbfgs.obj     = 0.0f;
                lbfgs.err     = 0;
                lbfgs.zeroone = 0;

                Array.Clear(lbfgs.expected, 0, lbfgs.expected.Length);

                var threadList = new List <Thread>();
                for (var i = 0; i < args.ThreadsNum; i++)
                {
                    var thread = new Thread(processList[i].Run);
                    thread.Start();
                    threadList.Add(thread);
                }

                int[,] merr;
                merr = new int[modelWriter.y_.Count, modelWriter.y_.Count];
                for (var i = 0; i < args.ThreadsNum; ++i)
                {
                    threadList[i].Join();
                    lbfgs.obj     += processList[i].obj;
                    lbfgs.err     += processList[i].err;
                    lbfgs.zeroone += processList[i].zeroone;

                    //Calculate error
                    for (var j = 0; j < modelWriter.y_.Count; j++)
                    {
                        for (var k = 0; k < modelWriter.y_.Count; k++)
                        {
                            merr[j, k] += processList[i].merr[j, k];
                        }
                    }
                }

                long num_nonzero = 0;
                var  fsize       = modelWriter.feature_size();
                var  alpha       = modelWriter.alpha_;
                if (orthant == true)
                {
                    //L1 regularization
                    Parallel.For <double>(1, fsize + 1, parallelOption, () => 0, (k, loop, subtotal) =>
                    {
                        subtotal += Math.Abs(alpha[k] / modelWriter.cost_factor_);
                        if (alpha[k] != 0.0)
                        {
                            Interlocked.Increment(ref num_nonzero);
                        }
                        return(subtotal);
                    },
                                          (subtotal) => // lock free accumulator
                    {
                        double initialValue;
                        double newValue;
                        do
                        {
                            initialValue = lbfgs.obj;               // read current value
                            newValue     = initialValue + subtotal; //calculate new value
                        }while (initialValue != Interlocked.CompareExchange(ref lbfgs.obj, newValue, initialValue));
                    });
                }
                else
                {
                    //L2 regularization
                    num_nonzero = fsize;
                    Parallel.For <double>(1, fsize + 1, parallelOption, () => 0, (k, loop, subtotal) =>
                    {
                        subtotal          += (alpha[k] * alpha[k] / (2.0 * modelWriter.cost_factor_));
                        lbfgs.expected[k] += (alpha[k] / modelWriter.cost_factor_);
                        return(subtotal);
                    },
                                          (subtotal) => // lock free accumulator
                    {
                        double initialValue;
                        double newValue;
                        do
                        {
                            initialValue = lbfgs.obj;               // read current value
                            newValue     = initialValue + subtotal; //calculate new value
                        }while (initialValue != Interlocked.CompareExchange(ref lbfgs.obj, newValue, initialValue));
                    });
                }

                //Show each iteration result
                var diff = (itr == 0 ? 1.0f : Math.Abs(old_obj - lbfgs.obj) / old_obj);
                old_obj = lbfgs.obj;

                ShowEvaluation(x.Length, modelWriter, lbfgs, termNum, itr, merr, yfreq, diff, startDT, num_nonzero, args);
                if (diff < args.MinDifference)
                {
                    converge++;
                }
                else
                {
                    converge = 0;
                }
                if (itr > args.MaxIteration || converge == 3)
                {
                    break;  // 3 is ad-hoc
                }

                if (args.DebugLevel > 0 && (double)lbfgs.zeroone / (double)x.Length < dMinErrRecord)
                {
                    var cc = Console.ForegroundColor;
                    Console.ForegroundColor = ConsoleColor.Red;
                    Console.Write("[Debug Mode] ");
                    Console.ForegroundColor = cc;

                    //Save current best feature weight into file
                    dMinErrRecord = (double)lbfgs.zeroone / (double)x.Length;
                    modelWriter.SaveFeatureWeight("feature_weight_tmp", false);
                }

                int iret;
                iret = lbfgs.optimize(alpha, modelWriter.cost_factor_, orthant);
                if (iret <= 0)
                {
                    return(false);
                }
            }

            return(true);
        }