public void Ksi_RightLeftNotNormalized_EachEntryMatrixIsSummedToOne() { var delta = 3; var numberOfStatesRightLeft = 4; var util = new TestDataUtils(); var observations = util.GetSvcData(util.FTSEFilePath, new DateTime(2011, 11, 18), new DateTime(2011, 12, 18)); var model = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <NormalDistribution>() { NumberOfStates = numberOfStatesRightLeft, Delta = delta, Emissions = CreateEmissions(observations, numberOfStatesRightLeft) }); //new HiddenMarkovModelState<NormalDistribution>(numberOfStatesRightLeft, delta, CreateEmissions(observations, numberOfStatesRightLeft)) { LogNormalized = true }; model.Normalized = false; var baseParameters = new BasicEstimationParameters <NormalDistribution> { Model = model, Observations = Helper.Convert(observations), Normalized = model.Normalized }; var alphaEstimator = new AlphaEstimator <NormalDistribution>(); var alpha = alphaEstimator.Estimate(baseParameters); var betaEstimator = new BetaEstimator <NormalDistribution>(); var beta = betaEstimator.Estimate(baseParameters); var @params = new AdvancedEstimationParameters <NormalDistribution> { Alpha = alpha, Beta = beta, Observations = Helper.Convert(observations), Model = model, Normalized = model.Normalized }; var estimator = new KsiEstimator <NormalDistribution>(); for (int t = 0; t < observations.Length - 1; t++) { Assert.AreEqual(1.0d, Math.Round(estimator.Estimate(@params)[t].Sum(), 5), string.Format("Failed Ksi [{1}] :{0}", new Matrix(estimator.Estimate(@params)[t]), t)); } }
public void Ksi_RightLeftAndNotNormalized_KsiCalculated() { var delta = 3; var numberOfStatesRightLeft = 4; var util = new TestDataUtils(); var observations = util.GetSvcData(util.FTSEFilePath, new DateTime(2011, 11, 18), new DateTime(2011, 12, 18)); var model = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <NormalDistribution>() { NumberOfStates = numberOfStatesRightLeft, Delta = delta, Emissions = CreateEmissions(observations, numberOfStatesRightLeft) }); //new HiddenMarkovModelState<NormalDistribution>(numberOfStatesRightLeft, delta, CreateEmissions(observations, numberOfStatesRightLeft)) { LogNormalized = true }; model.Normalized = false; var baseParameters = new BasicEstimationParameters <NormalDistribution> { Model = model, Observations = Helper.Convert(observations), Normalized = model.Normalized }; var alphaEstimator = new AlphaEstimator <NormalDistribution>(); var alpha = alphaEstimator.Estimate(baseParameters); var betaEstimator = new BetaEstimator <NormalDistribution>(); var beta = betaEstimator.Estimate(baseParameters); var @params = new AdvancedEstimationParameters <NormalDistribution> { Alpha = alpha, Beta = beta, Observations = Helper.Convert(observations), Model = model, Normalized = model.Normalized }; var estimator = new KsiEstimator <NormalDistribution>(); Assert.IsNotNull(estimator); for (int t = 0; t < observations.Length - 1; t++) { for (int i = 0; i < numberOfStatesRightLeft; i++) { for (int j = 0; j < numberOfStatesRightLeft; j++) { Assert.IsTrue(estimator.Estimate(@params)[t][i, j] >= 0 && estimator.Estimate(@params)[t][i, j] < 1, string.Format("Failed Ksi [{1}][{2},{3}]:{0}", estimator.Estimate(@params)[t][i, j], t, i, j)); } } } }
public void Estimate_KsiGammaParameters_TransitionProbabilityMatrixCalculatedAndReturned() { const int numberOfStates = 2; var util = new TestDataUtils(); var observations = util.GetSvcData(util.FTSEFilePath, new DateTime(2010, 12, 18), new DateTime(2011, 12, 18)); var model = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <NormalDistribution>() { NumberOfStates = numberOfStates, Emissions = CreateEmissions(observations, numberOfStates) }); model.Normalized = true; var observationsList = new List <IObservation>(); for (var i = 0; i < observations.Length; i++) { observationsList.Add(new Observation(observations[i], i.ToString())); } var baseEstimator = new BasicEstimationParameters <NormalDistribution> { Model = model, Observations = Helper.Convert(observations), Normalized = model.Normalized }; var alphaEstimator = new AlphaEstimator <NormalDistribution>(); var alpha = alphaEstimator.Estimate(baseEstimator); var betaEstimator = new BetaEstimator <NormalDistribution>(); var beta = betaEstimator.Estimate(baseEstimator); var @params = new AdvancedEstimationParameters <NormalDistribution> { Alpha = alpha, Beta = beta, Observations = observationsList, Model = model, Normalized = model.Normalized }; var gammaEstimator = new GammaEstimator <NormalDistribution>(); var ksiEstimator = new KsiEstimator <NormalDistribution>(); var gamma = gammaEstimator.Estimate(@params); var ksi = ksiEstimator.Estimate(@params); var estimator = new TransitionProbabilityEstimator <NormalDistribution>(); var parameters = new KsiGammaTransitionProbabilityMatrixParameters <NormalDistribution> { Model = model, Ksi = ksi, Gamma = gamma, T = observations.Length, Normalized = model.Normalized }; var estimatedTransitionProbabilityMatrix = estimator.Estimate(parameters); Assert.AreEqual(1d, Math.Round(estimatedTransitionProbabilityMatrix[0][0] + estimatedTransitionProbabilityMatrix[0][1], 5)); Assert.AreEqual(1d, Math.Round(estimatedTransitionProbabilityMatrix[1][0] + estimatedTransitionProbabilityMatrix[1][1], 5)); }
public void Ksi_ErgodicAndLogNormalized_KsiCalculated() { var util = new TestDataUtils(); var observations = util.GetSvcData(util.FTSEFilePath, new DateTime(2011, 11, 18), new DateTime(2011, 12, 18)); var model = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <NormalDistribution>() { NumberOfStates = NumberOfStates, Emissions = CreateEmissions(observations, NumberOfStates) }); //new HiddenMarkovModelState<NormalDistribution>(NumberOfStates, CreateEmissions(observations, NumberOfStates)) { LogNormalized = true }; model.Normalized = true; var baseParameters = new BasicEstimationParameters <NormalDistribution> { Model = model, Observations = Helper.Convert(observations), Normalized = model.Normalized }; var alphaEstimator = new AlphaEstimator <NormalDistribution>(); var alpha = alphaEstimator.Estimate(baseParameters); var betaEstimator = new BetaEstimator <NormalDistribution>(); var beta = betaEstimator.Estimate(baseParameters); var @params = new AdvancedEstimationParameters <NormalDistribution> { Alpha = alpha, Beta = beta, Observations = Helper.Convert(observations), Model = model, Normalized = model.Normalized }; var estimator = new KsiEstimator <NormalDistribution>(); Assert.IsNotNull(estimator); for (int t = 0; t < observations.Length - 1; t++) { for (int i = 0; i < NumberOfStates; i++) { for (int j = 0; j < NumberOfStates; j++) { Assert.IsTrue(estimator.Estimate(@params)[t][i, j] < 0, string.Format("Failed Ksi {0}", estimator.Estimate(@params)[t][i, j])); } } } }
public IHiddenMarkovModel <Mixture <IMultivariateDistribution> > Run(int maxIterations, double likelihoodTolerance) { // Initialize responce object var forwardBackward = new ForwardBackward(Normalized); do { maxIterations--; if (!_estimatedModel.Likelihood.EqualsTo(0)) { _currentModel = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <Mixture <IMultivariateDistribution> > { Pi = _estimatedPi, TransitionProbabilityMatrix = _estimatedTransitionProbabilityMatrix, Emissions = _estimatedEmissions }); //new HiddenMarkovModelState<Mixture<IMultivariateDistribution>>(_estimatedPi, _estimatedTransitionProbabilityMatrix, _estimatedEmissions) { LogNormalized = _estimatedModel.LogNormalized }; _currentModel.Normalized = Normalized; _currentModel.Likelihood = _estimatedModel.Likelihood; } // Run Forward-Backward procedure forwardBackward.RunForward(_observations, _currentModel); forwardBackward.RunBackward(_observations, _currentModel); // Calculate Gamma and Xi var @params = new MixtureSigmaEstimationParameters <Mixture <IMultivariateDistribution> > { Alpha = forwardBackward.Alpha, Beta = forwardBackward.Beta, Observations = _observations, Model = _currentModel, Normalized = _currentModel.Normalized, L = _currentModel.Emission[0].Components.Length, ObservationWeights = _observationWeights }; _gammaEstimator = new GammaEstimator <Mixture <IMultivariateDistribution> >(); _ksiEstimator = new KsiEstimator <Mixture <IMultivariateDistribution> >(); var mixtureCoefficientsEstimator = new MixtureCoefficientsEstimator <Mixture <IMultivariateDistribution> >(); var mixtureMuEstimator = new MixtureMuEstimator <Mixture <IMultivariateDistribution> >(); // Mean var mixtureSigmaEstimator = new MixtureSigmaEstimator <Mixture <IMultivariateDistribution> >(); // Covariance var mixtureGammaEstimator = new MixtureGammaEstimator <Mixture <IMultivariateDistribution> >(); @params.Gamma = _gammaEstimator.Estimate(@params); @params.GammaComponents = mixtureGammaEstimator.Estimate(@params); EstimatePi(_gammaEstimator.Estimate(@params)); // TODO : weights for A EstimateTransitionProbabilityMatrix(_gammaEstimator.Estimate(@params), _ksiEstimator.Estimate(@params), _observationWeights, _observations.Count); for (var n = 0; n < _currentModel.N; n++) { var mixturesComponents = _currentModel.Emission[n].Coefficients.Length; var distributions = new IMultivariateDistribution[mixturesComponents]; // Calculate coefficients for state n // TODO : weights for W var coefficients = mixtureCoefficientsEstimator.Estimate(@params)[n]; if (Normalized) { mixtureCoefficientsEstimator.Denormalize(); } // TODO : weights Mu @params.Mu = mixtureMuEstimator.Estimate(@params); for (var l = 0; l < mixturesComponents; l++) { // TODO : weights Sigma distributions[l] = new NormalDistribution(mixtureMuEstimator.Estimate(@params)[n, l], mixtureSigmaEstimator.Estimate(@params)[n, l]); } _estimatedEmissions[n] = new Mixture <IMultivariateDistribution>(coefficients, distributions); } _estimatedModel = HiddenMarkovModelStateFactory.GetState(new ModelCreationParameters <Mixture <IMultivariateDistribution> > { Pi = _estimatedPi, TransitionProbabilityMatrix = _estimatedTransitionProbabilityMatrix, Emissions = _estimatedEmissions }); _estimatedModel.Normalized = Normalized; _estimatedModel.Likelihood = forwardBackward.RunForward(_observations, _estimatedModel); _likelihoodDelta = Math.Abs(Math.Abs(_currentModel.Likelihood) - Math.Abs(_estimatedModel.Likelihood)); Debug.WriteLine("Iteration {3} , Current {0}, Estimate {1} Likelihood delta {2}", _currentModel.Likelihood, _estimatedModel.Likelihood, _likelihoodDelta, maxIterations); }while (_currentModel != _estimatedModel && maxIterations > 0 && _likelihoodDelta > likelihoodTolerance); return(_estimatedModel); }
public void KsiEstimator_ABBAObservation_NotNormalizedTest() { var startDistribution = new[] { 0.85, 0.15 }; // s = 0, t = 1 var tpm = new double[2][]; tpm[0] = new[] { 0.3, 0.7 }; tpm[1] = new[] { 0.1, 0.9 }; var observations = new List <IObservation> { new Observation(new double[] { 0 }, "A"), new Observation(new double[] { 1 }, "B"), new Observation(new double[] { 1 }, "B"), new Observation(new double[] { 0 }, "A") }; var emissions = new DiscreteDistribution[2]; emissions[0] = new DiscreteDistribution(new double[] { 0, 1 }, new[] { 0.4, 0.6 }); emissions[1] = new DiscreteDistribution(new double[] { 0, 1 }, new[] { 0.5, 0.5 }); var model = HiddenMarkovModelFactory.GetModel(new ModelCreationParameters <DiscreteDistribution>() { Pi = startDistribution, TransitionProbabilityMatrix = tpm, Emissions = emissions }); //new HiddenMarkovModel(startDistribution, tpm, emissions) { LogNormalized = false }; model.Normalized = false; var baseParameters = new BasicEstimationParameters <DiscreteDistribution> { Model = model, Observations = observations, Normalized = model.Normalized }; var alphaEstimator = new AlphaEstimator <DiscreteDistribution>(); var alpha = alphaEstimator.Estimate(baseParameters); var betaEstimator = new BetaEstimator <DiscreteDistribution>(); var beta = betaEstimator.Estimate(baseParameters); var @params = new AdvancedEstimationParameters <DiscreteDistribution> { Alpha = alpha, Beta = beta, Observations = observations, Model = model, Normalized = model.Normalized }; var ksiEstimator = new KsiEstimator <DiscreteDistribution>(); var ksi = ksiEstimator.Estimate(@params); Assert.AreEqual(0.28593281418422561, ksi[0][0, 0]); Assert.AreEqual(0.53991543690975563, ksi[0][0, 1]); Assert.AreEqual(0.021024471631193059, ksi[0][1, 0]); Assert.AreEqual(0.15312727727482567, ksi[0][1, 1]); Assert.AreEqual(1d, ksi[0].Sum()); Assert.AreEqual(0.10140018110107153, ksi[1][0, 0]); Assert.AreEqual(0.20555710471434716, ksi[1][0, 1]); Assert.AreEqual(0.0785838542018705, ksi[1][1, 0]); Assert.AreEqual(0.61445885998271088, ksi[1][1, 1]); Assert.AreEqual(1d, ksi[1].Sum()); Assert.AreEqual(0.045953370715644766, ksi[2][0, 0]); Assert.AreEqual(0.13403066458729723, ksi[2][0, 1]); Assert.AreEqual(0.06694007875078023, ksi[2][1, 0]); Assert.AreEqual(0.75307588594627772, ksi[2][1, 1]); Assert.AreEqual(1d, ksi[2].Sum()); }