public void TestLoad() { var res = IrisDataset.Load(); Assert.AreEqual(res.Data.Shape(), Tuple.Create(150, 4)); Assert.AreEqual(res.Target.Length, 150); }
/// <summary> /// Make some classification predictions on a toy dataset using a SVC /// /// If binary is True restrict to a binary classification problem instead of a /// multiclass classification problem /// </summary> /// <param name="x"></param> /// <param name="y"></param> /// <param name="binary"></param> private static Tuple <int[], int[], Matrix <double> > MakePrediction( Matrix <double> x = null, int[] y = null, bool binary = false) { if (x == null && y == null) { // import some data to play with var dataset = IrisDataset.Load(); x = dataset.Data; y = dataset.Target; } if (binary) { // restrict to a binary classification task x = x.RowsAt(y.Indices(v => v < 2)); y = y.Where(v => v < 2).ToArray(); } int nSamples = x.RowCount; int nFeatures = x.ColumnCount; var rng = new Random(37); int[] p = Shuffle(rng, Enumerable.Range(0, nSamples).ToArray()); x = x.RowsAt(p); y = y.ElementsAt(p); var half = nSamples / 2; // add noisy features to make the problem harder and avoid perfect results rng = new Random(0); x = x.HStack(DenseMatrix.CreateRandom(nSamples, 200, new Normal { RandomSource = rng })); // run classifier, get class probabilities and label predictions var clf = new Svc <int>(kernel: Kernel.Linear, probability: true); clf.Fit(x.SubMatrix(0, half, 0, x.ColumnCount), y.Take(half).ToArray()); Matrix <double> probasPred = clf.PredictProba(x.SubMatrix(half, x.RowCount - half, 0, x.ColumnCount)); if (binary) { // only interested in probabilities of the positive case // XXX: do we really want a special API for the binary case? probasPred = probasPred.SubMatrix(0, probasPred.RowCount, 1, 1); } var yPred = clf.Predict(x.SubMatrix(half, x.RowCount - half, 0, x.ColumnCount)); var yTrue = y.Skip(half).ToArray(); return(Tuple.Create(yTrue, yPred, probasPred)); }
public void TestInitialize() { var diabetes = DiabetesDataset.Load(); xDiabetes = diabetes.Data.SubMatrix(0, 200, 0, diabetes.Data.ColumnCount); yDiabetes = MatrixExtensions.ToColumnMatrix(diabetes.Target.SubVector(0, 200)); //ind = np.arange(X_diabetes.shape[0]) //Random rng = new Random(0); //rng.shuffle(ind) //ind = ind[:200] //X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] var iris = IrisDataset.Load(); xIris = SparseMatrix.OfMatrix(iris.Data); yIris = iris.Target; }
public Iris() { this.iris = new IrisDataset(); }