Example #1
0
        public void StreamWithInitialGenotypes()
        {
            var problem = Problem.Of(
                a => a,
                Codec.Of(
                    () => Genotype.Of(IntegerChromosome.Of(0, 1000)),
                    g => g.Gene.Allele
                    )
                );

            const int genotypeCount = 10;
            const int max           = 1000;
            var       genotypes     = IntRange.Of(1, genotypeCount)
                                      .Select(i => IntegerChromosome.Of(IntegerGene.Of(max, 0, max)))
                                      .Select(i => Genotype.Of(i))
                                      .ToImmutableSeq();

            var engine = Engine.Builder(problem).Build();

            var result = engine.Stream(genotypes)
                         .Take(1)
                         .ToBestEvolutionResult();

            long maxCount = result.GetPopulation().Count(pt => pt.GetFitness() == max);

            Assert.True(maxCount >= genotypeCount, $"{maxCount} >= {genotypeCount}");
        }
Example #2
0
 /// <summary>
 /// Mutates a gene by bitwise mutation.
 /// </summary>
 /// <param name="gene"></param>
 /// <returns></returns>
 public static Gene Mutate(Gene gene)
 {
     if (gene is BinaryGene)
     {
         BinaryGene g = (BinaryGene)gene.Clone();
         g.Value = !(BinaryGene)gene;
         return(g);
     }
     else if (gene is DoubleGene)
     {
         DoubleGene g     = (DoubleGene)gene.Clone();
         byte[]     bytes = BitConverter.GetBytes(g.Value);
         BitArray   ba    = new BitArray(bytes);
         int        p     = Utils.Rand.Next(ba.Length);
         ba.Set(p, !ba[p]);
         ba.CopyTo(bytes, 0);
         g.Value = BitConverter.ToDouble(bytes, 0);
         return(g);
     }
     else if (gene is IntegerGene)
     {
         IntegerGene g     = (IntegerGene)gene.Clone();
         byte[]      bytes = BitConverter.GetBytes(g.Value);
         BitArray    ba    = new BitArray(bytes);
         int         p     = Utils.Rand.Next(ba.Length);
         ba.Set(p, !ba[p]);
         ba.CopyTo(bytes, 0);
         g.Value = BitConverter.ToInt32(bytes, 0);
         return(g);
     }
     return((Gene)gene.Clone()); // default
 }
Example #3
0
 /// <summary>
 /// Mutates a gene by applying boundary mutation.
 /// </summary>
 /// <param name="gene">An IntegerGene or DoubleGene to be mutated.</param>
 /// <returns></returns>
 public static Gene Mutate(Gene gene)
 {
     if (gene is IntegerGene)
     {
         IntegerGene ig = (IntegerGene)gene;
         if (genX.Utils.Rand.NextDouble() < 0.5)
         {
             ig.Value = ig.Descriptor.MaxValue;
         }
         else
         {
             ig.Value = ig.Descriptor.MinValue;
         }
     }
     else if (gene is DoubleGene)
     {
         DoubleGene dg = (DoubleGene)gene;
         if (genX.Utils.Rand.NextDouble() < 0.5)
         {
             dg.Value = dg.Descriptor.MaxValue;
         }
         else
         {
             dg.Value = dg.Descriptor.MinValue;
         }
     }
     else
     {
         throw new ArgumentException(
                   "Boundary mutation may only apply to IntegerGene or DoubleGene genes.",
                   "gene"
                   );
     }
     return(gene);
 }
Example #4
0
        public double GetObjective(Chromosome c)
        {
            double distance        = 0;
            int    currentPosition = 0;
            int    initialPosition = 0;

            for (int i = 0; i < c.Genes.Length; i++)
            {
                IntegerGene ig = (IntegerGene)c.Genes[i];
                if (i == 0)
                {
                    initialPosition = cities[ig.Label];
                    currentPosition = cities[ig.Label];
                }
                else
                {
                    distance       += Math.Abs(cities[ig.Label] - currentPosition);
                    currentPosition = cities[ig.Label];
                }
            }
            IntegerGene lastGene = (IntegerGene)c.Genes[c.Genes.Length - 1];

            distance += Math.Abs(cities[lastGene.Label] - initialPosition);

            return(distance);
        }
        public void ItCanMutateRandomly()
        {
            var numberGene = new IntegerGene(_r);

            Assert.AreEqual(1, numberGene.GetNumberOfGeneAttributes());

            numberGene.Mutate(MutationStrategy.Random);
            Assert.AreEqual(8, numberGene.Value);
        }
        public void ItCanBoundaryMutate()
        {
            var numberGene = new IntegerGene(_r);

            Assert.AreEqual(1, numberGene.GetNumberOfGeneAttributes());

            numberGene.Mutate(MutationStrategy.Boundary);
            Assert.AreEqual(9, numberGene.Value);
        }
Example #7
0
        public double LinearDiophantineObjective(Chromosome c)
        {
            double r = 0;

            for (int i = 0; i < Coefficients.Length; i++)
            {
                IntegerGene g = (IntegerGene)c.Genes[i];
                r += ((double)Coefficients[i] * (double)g.Value);
            }

            return(System.Math.Abs((double)Result - r));
        }
        public TSPGenome(GeneticAlgorithm owner, City[] cities)
        {
            var organism = new int[cities.Length];
            var taken    = new bool[cities.Length];

            for (int i = 0; i < organism.Length; i++)
            {
                taken[i] = false;
            }
            for (int i = 0; i < organism.Length - 1; i++)
            {
                int icandidate;
                do
                {
                    icandidate = (int)(ThreadSafeRandom.NextDouble() * organism.Length);
                } while (taken[icandidate]);
                organism[i]       = icandidate;
                taken[icandidate] = true;
                if (i == organism.Length - 2)
                {
                    icandidate = 0;
                    while (taken[icandidate])
                    {
                        icandidate++;
                    }
                    organism[i + 1] = icandidate;
                }
            }

            pathChromosome = new Chromosome();
            Chromosomes.Add(pathChromosome);

            for (int i = 0; i < organism.Length; i++)
            {
                var gene = new IntegerGene();
                gene.Value = organism[i];
                pathChromosome.Genes.Add(gene);
            }
            Organism = organism;

            Encode();
        }
        /// <summary>
        /// 遺伝子を生成します
        /// </summary>
        /// <param name="chromosomesType"></param>
        /// <returns></returns>
        public static IntegerGene GenerateGene(ChromosomesType chromosomesType, Func <List <int>, double> calcFunc, int geneLength)
        {
            var gene = new IntegerGene
            {
                GenerationNum = 0,
                CalcFunc      = calcFunc,
                Fittness      = 0,
            };

            switch (chromosomesType)
            {
            case ChromosomesType.Binary:
                gene.Chromosomes = GenerateBinaryChromosomes(geneLength);
                break;

            case ChromosomesType.Permutaion:
                gene.Chromosomes = GeneratePermutationChromosomes(geneLength);
                break;
            }

            return(gene);
        }
Example #10
0
        private static EvolutionResult <IntegerGene, int> NewResult(Optimize opt, int value)
        {
            const int length = 1000;

            Func <Genotype <IntegerGene>, int> F = delegate(Genotype <IntegerGene> gt)
            {
                return(gt.Gene.Allele);
            };

            var pop = new Population <IntegerGene, int>(length);

            for (var i = 0; i < length; ++i)
            {
                var gt = Genotype.Of(IntegerChromosome.Of(
                                         IntegerGene.Of(value, 0, length)
                                         ));
                pop.Add(Phenotype.Of(gt, 1, F));
            }

            Shuffle(pop, RandomRegistry.GetRandom());

            return(EvolutionResult.Of(opt, pop, 0, 0, EvolutionDurations.Zero, 0, 0, 0));
        }
Example #11
0
        public void BestWorstPhenotype()
        {
            const int length = 100;

            Func <Genotype <IntegerGene>, int> F = delegate(Genotype <IntegerGene> gt)
            {
                return(gt.Gene.Allele);
            };

            var population = new Population <IntegerGene, int>(length);

            for (var i = 0; i < length; ++i)
            {
                var gt = Genotype.Of(IntegerChromosome.Of(
                                         IntegerGene.Of(i, 0, length)
                                         ));
                population.Add(Phenotype.Of(gt, 1, F));
            }

            Shuffle(population, RandomRegistry.GetRandom());

            var maxResult = EvolutionResult.Of(
                Optimize.Maximum, population,
                0, 0, EvolutionDurations.Zero, 0, 0, 0
                );

            Assert.Equal(length - 1, maxResult.GetBestFitness());
            Assert.Equal(0, maxResult.GetWorstFitness());

            var minResult = EvolutionResult.Of(
                Optimize.Minimum, population,
                0, 0, EvolutionDurations.Zero, 0, 0, 0
                );

            Assert.Equal(0, minResult.GetBestFitness());
            Assert.Equal(length - 1, minResult.GetWorstFitness());
        }
Example #12
0
        public void CompareTo()
        {
            const int length = 100;

            Func <Genotype <IntegerGene>, int> F = delegate(Genotype <IntegerGene> gt)
            {
                return(gt.Gene.Allele);
            };

            var small = new Population <IntegerGene, int>(length);

            for (var i = 0; i < length; ++i)
            {
                var gt = Genotype.Of(IntegerChromosome.Of(
                                         IntegerGene.Of(i, 0, length)
                                         ));
                small.Add(Phenotype.Of(gt, 1, F));
            }
            Shuffle(small, RandomRegistry.GetRandom());

            var big = new Population <IntegerGene, int>(length);

            for (var i = 0; i < length; ++i)
            {
                var gt = Genotype.Of(IntegerChromosome.Of(
                                         IntegerGene.Of(i + length, 0, length)
                                         ));
                big.Add(Phenotype.Of(gt, 1, F));
            }
            Shuffle(big, RandomRegistry.GetRandom());


            var smallMaxResult = EvolutionResult.Of(
                Optimize.Maximum, small,
                0, 0, EvolutionDurations.Zero, 0, 0, 0
                );
            var bigMaxResult = EvolutionResult.Of(
                Optimize.Maximum, big,
                0, 0, EvolutionDurations.Zero, 0, 0, 0
                );

            Assert.True(smallMaxResult.CompareTo(bigMaxResult) < 0);
            Assert.True(bigMaxResult.CompareTo(smallMaxResult) > 0);
            Assert.True(smallMaxResult.CompareTo(smallMaxResult) == 0);
            Assert.True(bigMaxResult.CompareTo(bigMaxResult) == 0);


            var smallMinResult = EvolutionResult.Of(
                Optimize.Minimum, small,
                0, 0, EvolutionDurations.Zero, 0, 0, 0
                );
            var bigMinResult = EvolutionResult.Of(
                Optimize.Minimum, big,
                0, 0, EvolutionDurations.Zero, 0, 0, 0
                );

            Assert.True(smallMinResult.CompareTo(bigMinResult) > 0);
            Assert.True(bigMinResult.CompareTo(smallMinResult) < 0);
            Assert.True(smallMinResult.CompareTo(smallMinResult) == 0);
            Assert.True(bigMinResult.CompareTo(bigMinResult) == 0);
        }
        public void ItCanCreateWithRandomValues()
        {
            var gene = new IntegerGene(_r);

            Assert.AreEqual(3, gene.Value);
        }
        public void ItCanDetermineTheNumberOfGeneAttributesOnAGene()
        {
            var numberGene = new IntegerGene(_r);

            Assert.AreEqual(1, numberGene.GetNumberOfGeneAttributes());
        }