public int GetPackedBitSize() { // How many indices do we have? int Indices = Height * Width; if (DualPlane) { Indices *= 2; } IntegerEncoded IntEncoded = IntegerEncoded.CreateEncoding(MaxWeight); return(IntEncoded.GetBitLength(Indices)); }
static void DecodeColorValues( int[] OutputValues, byte[] InputData, uint[] Modes, int NumberPartitions, int NumberBitsForColorData) { // First figure out how many color values we have int NumberValues = 0; for (int i = 0; i < NumberPartitions; i++) { NumberValues += (int)((Modes[i] >> 2) + 1) << 1; } // Then based on the number of values and the remaining number of bits, // figure out the max value for each of them... int Range = 256; while (--Range > 0) { IntegerEncoded IntEncoded = IntegerEncoded.CreateEncoding(Range); int BitLength = IntEncoded.GetBitLength(NumberValues); if (BitLength <= NumberBitsForColorData) { // Find the smallest possible range that matches the given encoding while (--Range > 0) { IntegerEncoded NewIntEncoded = IntegerEncoded.CreateEncoding(Range); if (!NewIntEncoded.MatchesEncoding(IntEncoded)) { break; } } // Return to last matching range. Range++; break; } } // We now have enough to decode our integer sequence. List <IntegerEncoded> IntegerEncodedSequence = new List <IntegerEncoded>(); BitArrayStream ColorBitStream = new BitArrayStream(new BitArray(InputData)); IntegerEncoded.DecodeIntegerSequence(IntegerEncodedSequence, ColorBitStream, Range, NumberValues); // Once we have the decoded values, we need to dequantize them to the 0-255 range // This procedure is outlined in ASTC spec C.2.13 int OutputIndices = 0; foreach (IntegerEncoded IntEncoded in IntegerEncodedSequence) { int BitLength = IntEncoded.NumberBits; int BitValue = IntEncoded.BitValue; Debug.Assert(BitLength >= 1); int A = 0, B = 0, C = 0, D = 0; // A is just the lsb replicated 9 times. A = BitArrayStream.Replicate(BitValue & 1, 1, 9); switch (IntEncoded.GetEncoding()) { case IntegerEncoded.EIntegerEncoding.JustBits: { OutputValues[OutputIndices++] = BitArrayStream.Replicate(BitValue, BitLength, 8); break; } case IntegerEncoded.EIntegerEncoding.Trit: { D = IntEncoded.TritValue; switch (BitLength) { case 1: { C = 204; break; } case 2: { C = 93; // B = b000b0bb0 int b = (BitValue >> 1) & 1; B = (b << 8) | (b << 4) | (b << 2) | (b << 1); break; } case 3: { C = 44; // B = cb000cbcb int cb = (BitValue >> 1) & 3; B = (cb << 7) | (cb << 2) | cb; break; } case 4: { C = 22; // B = dcb000dcb int dcb = (BitValue >> 1) & 7; B = (dcb << 6) | dcb; break; } case 5: { C = 11; // B = edcb000ed int edcb = (BitValue >> 1) & 0xF; B = (edcb << 5) | (edcb >> 2); break; } case 6: { C = 5; // B = fedcb000f int fedcb = (BitValue >> 1) & 0x1F; B = (fedcb << 4) | (fedcb >> 4); break; } default: throw new ASTCDecoderException("Unsupported trit encoding for color values!"); } break; } case IntegerEncoded.EIntegerEncoding.Quint: { D = IntEncoded.QuintValue; switch (BitLength) { case 1: { C = 113; break; } case 2: { C = 54; // B = b0000bb00 int b = (BitValue >> 1) & 1; B = (b << 8) | (b << 3) | (b << 2); break; } case 3: { C = 26; // B = cb0000cbc int cb = (BitValue >> 1) & 3; B = (cb << 7) | (cb << 1) | (cb >> 1); break; } case 4: { C = 13; // B = dcb0000dc int dcb = (BitValue >> 1) & 7; B = (dcb << 6) | (dcb >> 1); break; } case 5: { C = 6; // B = edcb0000e int edcb = (BitValue >> 1) & 0xF; B = (edcb << 5) | (edcb >> 3); break; } default: throw new ASTCDecoderException("Unsupported quint encoding for color values!"); } break; } } if (IntEncoded.GetEncoding() != IntegerEncoded.EIntegerEncoding.JustBits) { int T = D * C + B; T ^= A; T = (A & 0x80) | (T >> 2); OutputValues[OutputIndices++] = T; } } // Make sure that each of our values is in the proper range... for (int i = 0; i < NumberValues; i++) { Debug.Assert(OutputValues[i] <= 255); } }