/** Return this raised to an integer power. * Implemented by repeated squaring and multiplication. * If y < 0, returns div_inv of the result. */ public virtual Numeric power(IntNum y) { if (y.isNegative()) { return(power(IntNum.neg(y)).div_inv()); } Numeric pow2 = this; Numeric r = null; for (;;) // for (i = 0; ; i++) { // pow2 == x**(2**i) // prod = x**(sum(j=0..i-1, (y>>j)&1)) if (y.isOdd()) { r = r == null ? pow2 : r.mul(pow2); // r *= pow2 } y = IntNum.shift(y, -1); if (y.isZero()) { break; } // pow2 *= pow2; pow2 = pow2.mul(pow2); } return(r == null?mul_ident() : r); }
public static RatNum make(IntNum num, IntNum den) { IntNum g = IntNum.gcd(num, den); if (den.isNegative()) { g = IntNum.neg(g); } if (!g.isOne()) { num = IntNum.quotient(num, g); den = IntNum.quotient(den, g); } return(den.isOne() ? (RatNum)num : (RatNum)(new IntFraction(num, den))); }
public override double doubleValue() { bool neg = num.isNegative(); if (den.isZero()) { return(neg ? Double.NegativeInfinity : num.isZero() ? Double.NaN : Double.PositiveInfinity); } IntNum n = num; if (neg) { n = IntNum.neg(n); } int num_len = n.intLength(); int den_len = den.intLength(); int exp = 0; if (num_len < den_len + 54) { exp = den_len + 54 - num_len; n = IntNum.shift(n, exp); exp = -exp; } // Divide n (which is shifted num) by den, using truncating division, // and return quot and remainder. IntNum quot = new IntNum(); IntNum remainder = new IntNum(); IntNum.divide(n, den, quot, remainder, TRUNCATE); quot = quot.canonicalize(); remainder = remainder.canonicalize(); return(quot.roundToDouble(exp, neg, !remainder.isZero())); }
public static IntFraction neg(IntFraction x) { // If x is normalized, we do not need to call RatNum.make to normalize. return(new IntFraction(IntNum.neg(x.numerator()), x.denominator())); }