public void Run() { // Prepare data var baseDataDirectoryPath = @"E:\DataSets\Mnist"; var trainFilePath = Path.Combine(baseDataDirectoryPath, "Train-28x28_cntk_text.txt"); // Define data type and device for the model. var dataType = DataType.Float; var device = DeviceDescriptor.UseDefaultDevice(); // Setup initializers var random = new Random(232); Func <CNTKDictionary> weightInit = () => Initializers.Xavier(random.Next(), scale: 0.02); var biasInit = Initializers.Zero(); // Ensure reproducible results with CNTK. CNTKLib.SetFixedRandomSeed((uint)random.Next()); CNTKLib.ForceDeterministicAlgorithms(); // Setup generator var ganeratorInputShape = NDShape.CreateNDShape(new int[] { 100 }); var generatorInput = Variable.InputVariable(ganeratorInputShape, dataType); var generatorNetwork = Generator(generatorInput, weightInit, biasInit, device, dataType); // Setup discriminator var discriminatorInputShape = NDShape.CreateNDShape(new int[] { 784 }); // 28 * 28 * 1. var discriminatorInput = Variable.InputVariable(discriminatorInputShape, dataType); // scale image input between -1.0 and 1.0. var discriminatorInputScaled = CNTKLib.Minus( CNTKLib.ElementTimes(Constant.Scalar(2 * 0.00390625f, device), discriminatorInput), Constant.Scalar(1.0f, device)); var discriminatorNetwork = Discriminator(discriminatorInputScaled, weightInit, biasInit, device, dataType); // The discriminator must be used on both the real MNIST images and fake images generated by the generator function. // One way to represent this in the computational graph is to create a clone of the output of the discriminator function, // but with substituted inputs. Setting method = share in the clone function ensures that both paths through the discriminator model // use the same set of parameters. var discriminatorNetworkFake = discriminatorNetwork .Clone(ParameterCloningMethod.Share, replacements: new Dictionary <Variable, Variable> { { discriminatorInputScaled.Output, generatorNetwork.Output }, }); // Create minibatch source for providing the real images. var imageNameToVariable = new Dictionary <string, Variable> { { "features", discriminatorInput } }; var imageMinibatchSource = CreateMinibatchSource(trainFilePath, imageNameToVariable, randomize: true); // Create minibatch source for providing the noise. var noiseNameToVariable = new Dictionary <string, Variable> { { "noise", generatorInput } }; var noiseMinibatchSource = new UniformNoiseMinibatchSource(noiseNameToVariable, min: -1.0f, max: 1.0f, seed: random.Next()); // Combine both sources in the composite minibatch source. var compositeMinibatchSource = new CompositeMinibatchSource(imageMinibatchSource, noiseMinibatchSource); // Setup generator loss: 1.0 - C.log(D_fake) var generatorLossFunc = CNTKLib.Minus(Constant.Scalar(1.0f, device), CNTKLib.Log(discriminatorNetworkFake)); // Setup discriminator loss: -(C.log(D_real) + C.log(1.0 - D_fake)) var discriminatorLossFunc = CNTKLib.Negate(CNTKLib.Plus(CNTKLib.Log(discriminatorNetwork), CNTKLib.Log(CNTKLib.Minus(Constant.Scalar(1.0f, device), discriminatorNetworkFake)))); // Create fitters for the training loop. // Generator uses Adam and discriminator SGD. // Advice from: https://github.com/soumith/ganhacks var generatorLearner = Learners.Adam(generatorNetwork.Parameters(), learningRate: 0.0002, momentum: 0.5, gradientClippingThresholdPerSample: 1.0); var generatorFitter = CreateFitter(generatorLearner, generatorNetwork, generatorLossFunc, device); var discriminatorLearner = Learners.SGD(discriminatorNetwork.Parameters(), learningRate: 0.0002, gradientClippingThresholdPerSample: 1.0); var discriminatorFitter = CreateFitter(discriminatorLearner, discriminatorNetwork, discriminatorLossFunc, device); int epochs = 30; int batchSize = 128; // Controls how many steps the discriminator takes, // each time the generator takes 1 step. // Default from the original paper is 1. int discriminatorSteps = 1; var isSweepEnd = false; for (int epoch = 0; epoch < epochs;) { for (int step = 0; step < discriminatorSteps; step++) { // Discriminator needs both real images and noise, // so uses the composite minibatch source. var minibatchItems = compositeMinibatchSource.GetNextMinibatch(batchSize, device); isSweepEnd = minibatchItems.isSweepEnd; discriminatorFitter.FitNextStep(minibatchItems.minibatch, batchSize); DisposeValues(minibatchItems.minibatch); } // Generator only needs noise images, // so uses the noise minibatch source separately. var noiseMinibatchItems = noiseMinibatchSource.GetNextMinibatch(batchSize, device); generatorFitter.FitNextStep(noiseMinibatchItems.minibatch, batchSize); DisposeValues(noiseMinibatchItems.minibatch); if (isSweepEnd) { var generatorCurrentLoss = generatorFitter.CurrentLoss; generatorFitter.ResetLossAndMetricAccumulators(); var discriminatorCurrentLoss = discriminatorFitter.CurrentLoss; discriminatorFitter.ResetLossAndMetricAccumulators(); var traceOutput = $"Epoch: {epoch + 1:000} Generator Loss = {generatorCurrentLoss:F8}, Discriminator Loss = {discriminatorCurrentLoss:F8}"; Trace.WriteLine(traceOutput); ++epoch; } } // Sample 6x6 images from generator. var samples = 6 * 6; var batch = noiseMinibatchSource.GetNextMinibatch(samples, device); var noise = batch.minibatch; var predictor = new Predictor(generatorNetwork, device); var images = predictor.PredictNextStep(noise); var imagesData = images.SelectMany(t => t).ToArray(); // Show examples var app = new Application(); var window = new PlotWindowBitMap("Generated Images", imagesData, 28, 28, 1, true); window.Show(); app.Run(window); }