Example #1
0
        /// <summary>
        ///     Used to classify image into a category
        /// </summary>
        /// <param name="processedImage">Image that has been preprocessed</param>
        /// <returns>Category that the image belongs to (according to the network)</returns>
        public string Classify(Bitmap processedImage)
        {
            double[] array;
            _imageToArray.Convert(processedImage, out array);
            var computedValue = _classificationNetwork.Compute(array)[0];
            var result        = (int)Math.Round(computedValue * (_allData.Count - 1));

            return(_allData.Keys.ToArray()[result]);
        }
Example #2
0
 private double[] ConvertImage(Bitmap image)
 {
     double[] converted;
     if (_dataProviderconfiguration.UseGrayScale)
     {
         _imageToArray.Convert(image, out converted);
     }
     else
     {
         ExtractRgb(image, out converted);
     }
     return(converted);
 }
Example #3
0
        public void ConvertTest1()
        {
            ArrayToImage target = new ArrayToImage(16, 16);

            double[] pixels =
            {
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 1
                0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,  // 2
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 3
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 4
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 5
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 6
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 7
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 8
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 9
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 10
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 11
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 12
                0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,  // 13
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 14
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 15
            };

            Bitmap imageActual;

            target.Convert(pixels, out imageActual);


            double[]     actual;
            ImageToArray c = new ImageToArray();

            c.Convert(imageActual, out actual);

            double[] expected;

            Bitmap imageExpected = Properties.Resources.image1;

            new Invert().ApplyInPlace(imageExpected);
            new Threshold().ApplyInPlace(imageExpected);

            c.Convert(imageExpected, out expected);


            for (int i = 0; i < pixels.Length; i++)
            {
                Assert.AreEqual(actual[i], expected[i]);
            }
        }
        private void Classify(object sender, EventArgs e)
        {
            if (_imageToClassify == null)
            {
                label1.Text = "You didn't choose an image!\n";
                label1.Refresh();
                return;
            }

            double[] input;
            _itoa.Convert(_imageToClassify, out input);
            double[] output = _network.Compute(input);
            label1.Text = "Prediction: " + _categories[GetResult(output)];
            label1.Refresh();
        }
Example #5
0
        void TrainImage(FileInfo fi)
        {
            string value = readIni.ReadValue("ImageInfo", fi.Name);

            string[] P      = value.Split('|');
            double[] output = new double[P.Count()];
            for (int i = 0; i < P.Count(); i++)
            {
                output[i] = double.Parse(P[i]);
            }
            Bitmap       bitmap = new Bitmap(Image.FromFile(fi.FullName));
            ImageToArray conv   = new ImageToArray(min: 0, max: 1);

            double[] input;
            conv.Convert(bitmap, out input);
            labelTrain.Text = "0/10";
            System.Threading.Tasks.Task.Run(() =>
            {
                NeuralNetwork network = new NeuralNetwork(0.00125, new int[] { bitmap.Width *bitmap.Height, 6, 5, 5 });
                for (int i = 0; i < 10; i++)
                {
                    network.Train(input.ToList(), output.ToList());
                    this.Invoke(new Action(
                                    delegate()
                    {
                        labelTrain.Text = (i + 1).ToString() + "/" + 10;
                    }));
                }
            });
        }
Example #6
0
        public void somTraining()
        {
            double[][] input_data = new double[Data.instance.images.Count][];
            for (int i = 0; i < images.Count; i++)
            {
                Bitmap image = new Bitmap(images[i]);
                image = preProcess(image);
                ImageToArray converter = new ImageToArray(0, 1);
                converter.Convert(image, out input_data[i]);
            }

            pca = new PrincipalComponentAnalysis(PrincipalComponentMethod.Center);

            pca.Learn(input_data);
            double[][] input_pca = pca.Transform(input_data);
            //o Clusters(Groups) Count: 4

            som_network  = new DistanceNetwork(input_pca[0].Count(), 4);
            som_learning = new SOMLearning(som_network);
            //o Error Goals: 0.001
            //o Max Epochs: 100000
            int    maxIter  = 100000;
            double maxError = 0.001;

            for (int i = 0; i < maxIter; i++)
            {
                double error = som_learning.RunEpoch(input_pca);
                if (error < maxError)
                {
                    break;
                }
            }

            System.Windows.Forms.MessageBox.Show("SOM Training Complete");
        }
Example #7
0
        public void ConvertTest2()
        {
            Bitmap image = Properties.Resources.image1;

            ImageToArray target = new ImageToArray();

            double[] pixels;
            double[] pixelsExpected =
            {
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 0
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 1
                0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,  // 2
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 3
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 4
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 5
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 6
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 7
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 8
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 9
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 10
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 11
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 12
                0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,  // 13
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 14
                0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,  // 15
            };


            target.Convert(image, out pixels);

            for (int i = 0; i < pixels.Length; i++)
            {
                Assert.AreEqual(pixelsExpected[i], pixelsExpected[i]);
            }
        }
Example #8
0
        private void predict_Click(object sender, EventArgs e)
        {
            openFileDialog1.Multiselect = false;
            openFileDialog1.Filter      = "Images Files (*.jpg, *jpeg, *.png) | *.jpg; *.jpeg; *.png";

            if (openFileDialog1.ShowDialog() == DialogResult.OK)
            {
                Bitmap img1 = new Bitmap(openFileDialog1.FileName);
                pictureBox1.Image = img1;
            }
            Bitmap img = new Bitmap(pictureBox1.Image);

            img = Data.getInstance().preprocessing(img);

            double[] input = new double[100];

            ImageToArray convert = new ImageToArray(0, 1);

            convert.Convert(img, out input);

            double[] output = bpnn_net.Compute(input);

            int result = Convert.ToInt32((Math.Round(output[0]) - 0) * (Data.getInstance().classes.Count - 1 - 0) / (1 - 0) + 0);



            textBox1.Text = Data.getInstance().classes[result];

            MessageBox.Show("Prediction Success");
        }
Example #9
0
        private void btnDone_Click(object sender, EventArgs e)
        {
            totalData = Directory.GetDirectories(savedDirectoryName).Length;
            Console.WriteLine($"Total Data : {totalData}");
            var counter = 0;

            foreach (var subFolder in Directory.GetDirectories(savedDirectoryName))
            {
                var          label        = new DirectoryInfo(subFolder).Name;
                ImageToArray imageToArray = new ImageToArray();
                foreach (var files in Directory.GetFiles(subFolder))
                {
                    var      img = new Bitmap(files);
                    double[] imageAsArray;
                    imageToArray.Convert(mainForm.Preprocess(img), out imageAsArray);
                    var output = new double[totalData];
                    inputLabel.Add(label);
                    Array.Clear(output, 0, totalData);
                    output[counter] = 1;
                    inputImgArray.Add(imageAsArray);
                    outputImgArray.Add(output);
                    Console.WriteLine("Result Output");
                    output.ToList().ForEach(Console.WriteLine);
                }
                Console.WriteLine("Item Done");
                counter++;
                outputCount++;
            }
            BackPropagationMethod();
            Clustering();
            MessageBox.Show("Trained Succesfully");
            this.Close();
        }
        /// <summary>
        /// Image Kmeans.
        /// </summary>
        /// <param name="image">Input Image</param>
        /// <param name="k">Number of colors</param>
        /// <returns>K dominante colors</returns>
        public static Color[] GetDominanteColors(Bitmap image, int k)
        {
            // Create converters
            ImageToArray imageToArray = new ImageToArray(min: -1, max: +1);
            ArrayToImage arrayToImage = new ArrayToImage(1, k, min: -1, max: +1);

            // Transform the image into an array of pixel values
            double[][] pixels; imageToArray.Convert(image, out pixels);

            //  Create a K-Means algorithm using given k and a
            //  square Euclidean distance as distance metric.
            KMeans kmeans = new KMeans(k, new SquareEuclidean())
            {
                Tolerance = 0.05
            };

            // Compute the K-Means algorithm until the difference in
            //  cluster centroids between two iterations is below 0.05
            kmeans.Learn(pixels);

            var controids = kmeans.Clusters.Centroids;

            Bitmap       controidsColors; arrayToImage.Convert(controids, out controidsColors);
            List <Color> results = new List <Color>();

            for (var i = 0; i < k; i++)
            {
                Color colorPx = controidsColors.GetPixel(0, i);
                results.Add(colorPx);
            }

            return(results.ToArray());
        }
Example #11
0
        /// <summary>
        ///   Runs the K-Means algorithm.
        /// </summary>
        ///
        private void runKMeans()
        {
            // Retrieve the number of clusters
            int k = (int)numClusters.Value;

            // Load original image
            Bitmap image = Properties.Resources.leaf;

            // Create converters
            ImageToArray imageToArray = new ImageToArray(min: -1, max: +1);
            ArrayToImage arrayToImage = new ArrayToImage(image.Width, image.Height, min: -1, max: +1);

            // Transform the image into an array of pixel values
            double[][] pixels; imageToArray.Convert(image, out pixels);


            // Create a K-Means algorithm using given k and a
            //  square Euclidean distance as distance metric.
            KMeans kmeans = new KMeans(k, Distance.SquareEuclidean);

            // Compute the K-Means algorithm until the difference in
            //  cluster centroids between two iterations is below 0.05
            int[] idx = kmeans.Compute(pixels, 0.05);


            // Replace every pixel with its corresponding centroid
            pixels.ApplyInPlace((x, i) => kmeans.Clusters.Centroids[idx[i]]);

            // Show resulting image in the picture box
            Bitmap result; arrayToImage.Convert(pixels, out result);

            pictureBox.Image = result;
        }
Example #12
0
        void cluster(ref Bitmap bitmap)
        {
            if (!PreCluster.Checked)
            {
                return;
            }

            int _k = (int)PartCount.Value;

            Bitmap image = realImage;

            ImageToArray imageToArray = new ImageToArray(min: -1, max: +1);
            ArrayToImage arrayToImage = new ArrayToImage(image.Width, image.Height, min: -1, max: +1);

            double[][] pixels; imageToArray.Convert(image, out pixels);

            KMeans kmeans = new KMeans(_k, new SquareEuclidean())
            {
                Tolerance = 0.05
            };

            int[] idx = kmeans.Learn(pixels).Decide(pixels);

            pixels.Apply((x, i) => kmeans.Clusters.Centroids[idx[i]], result: pixels);

            Bitmap result; arrayToImage.Convert(pixels, out result);

            bitmap = result;
        }
Example #13
0
        //here is where the magic starts
        private void btnBrowse_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();

            ofd.Filter      = "Image File|*.jpg;*.bmp;*.jpeg";
            ofd.Multiselect = false;
            if (ofd.ShowDialog() == DialogResult.OK)
            {
                clearItem();
                Bitmap img = new Bitmap(ofd.FileName);
                pictureBrowsed.Image = img;
                img = mainForm.Preprocess(img);
                ImageToArray imageToArray = new ImageToArray();
                double[]     input;
                imageToArray.Convert(img, out input);
                var pcares = pca.Transform(input);
                dn.Compute(pcares);
                var index        = dn.GetWinner();
                var similarIndex = classMap[index];
                foreach (var item in similarIndex)
                {
                    showItem(item);
                }
            }
        }
Example #14
0
        private void btnSubmit_Click(object sender, EventArgs e)
        {
            Bitmap img = new Bitmap(pictBoxResult.Image);

            img = mainForm.Preprocess(img);
            ImageToArray imageToArray = new ImageToArray();

            double[] input;
            imageToArray.Convert(img, out input);
            var res     = an.Compute(input);
            var highest = 0;

            for (var i = 0; i < res.Length; i++)
            {
                if (res[i] > res[highest])
                {
                    highest = i;
                }
            }
            if (resultName[highest] == lblResult.Text)
            {
                MessageBox.Show("True");
                score = score + 10;
                NewQuiz();
            }
            else
            {
                MessageBox.Show($"Wrong Answer, You Uploaded {resultName[highest]}");
            }
        }
Example #15
0
        private void kmeans()
        {
            // Retrieve the number of clusters
            int k = (int)numClusters.Value;

            // Load original image
            Bitmap image = Properties.Resources.leaf;

            // Create conversors
            ImageToArray imageToArray = new ImageToArray(min: -1, max: +1);
            ArrayToImage arrayToImage = new ArrayToImage(image.Width, image.Height, min: -1, max: +1);

            // Transform the image into an array of pixel values
            double[][] pixels; imageToArray.Convert(image, out pixels);


            // Create a K-Means algorithm using given k and a
            //  square euclidean distance as distance metric.
            KMeans kmeans = new KMeans(k, Distance.SquareEuclidean);

            // Compute the K-Means algorithm until the difference in
            //  cluster centroids between two iterations is below 0.05
            int[] idx = kmeans.Compute(pixels, 0.05);


            // Replace every pixel with its corresponding centroid
            pixels.ApplyInPlace((x, i) => kmeans.Clusters.Centroids[idx[i]]);

            // Show resulting image in the picture box
            Bitmap result; arrayToImage.Convert(pixels, out result);

            pictureBox.Image = result;
        }
Example #16
0
        private void button1_Click(object sender, EventArgs e)
        {
            if (Data.instance.images.Count == 0)
            {
                System.Windows.Forms.MessageBox.Show("No image for SOM Training...");
                return;
            }

            if (openFileDialog1.ShowDialog() == DialogResult.OK)
            {
                pictureBox1.ImageLocation = openFileDialog1.FileName;
                pictureBox1.Image         = Data.instance.preProcess(new Bitmap(pictureBox1.ImageLocation));

                // Main Process
                listView1.Items.Clear();
                imageList1.Images.Clear();
                double[] input_data = new double[10 * 10];

                Bitmap image = new Bitmap(pictureBox1.Image);
                image = Data.instance.preProcess(image);

                ImageToArray converter = new ImageToArray(0, 1);
                converter.Convert(image, out input_data);

                double[] input_pca = Data.instance.pca.Transform(input_data);
                Data.instance.som_network.Compute(input_pca);

                int winner = Data.instance.som_network.GetWinner();

                for (int i = 0; i < Data.instance.images.Count; i++)
                {
                    double[] input_data2 = new double[10 * 10];

                    Bitmap image2 = new Bitmap(Data.instance.images[i]);
                    image2 = Data.instance.preProcess(image2);

                    ImageToArray converter2 = new ImageToArray(0, 1);
                    converter2.Convert(image2, out input_data2);

                    double[] input_pca2 = Data.instance.pca.Transform(input_data2);

                    Data.instance.som_network.Compute(input_pca2);
                    int winner2 = Data.instance.som_network.GetWinner();

                    //bool isSame = false;

                    if (winner == winner2)
                    {
                        Bitmap showImage = Data.instance.images[i];

                        imageList1.Images.Add(showImage);
                        listView1.Items.Add("", imageList1.Images.Count - 1);
                    }
                }

                MessageBox.Show("Find Similar Item Finished!");
            }
        }
Example #17
0
        public static MeanShiftClusteringResult MeanShiftAccord(Image <Bgr, Byte> image, MeanShiftClusteringAcordParams msParams)
        {
            //Image<Bgr, byte> result = new Image<Bgr, byte>(image.Size);

            //int pixelSize = 3;   // RGB color pixel
            //int kernel = 3;
            //double sigma = 0.06; // kernel bandwidth
            int    pixelSize = 3;              // RGB color pixel
            int    kernel    = msParams.Kernel;
            double sigma     = msParams.Sigma; // kernel bandwidth

            // Load a test image (shown below)
            Bitmap msImage = image.Bitmap;

            // Create converters
            ImageToArray imageToArray = new ImageToArray(min: -1, max: +1);
            ArrayToImage arrayToImage = new ArrayToImage(msImage.Width, msImage.Height, min: -1, max: +1);

            // Transform the image into an array of pixel values
            double[][] pixels;
            imageToArray.Convert(msImage, out pixels);

            // Create a MeanShift algorithm using given bandwidth
            //   and a Gaussian density kernel as kernel function.
            Accord.MachineLearning.MeanShift meanShift = new Accord.MachineLearning.MeanShift(pixelSize, new GaussianKernel(kernel), sigma);

            // We will compute the mean-shift algorithm until the means
            // change less than 0.5 between two iterations of the algorithm
            meanShift.Tolerance     = 0.05;
            meanShift.MaxIterations = 10;

            // Learn the clusters in the data
            var clustering = meanShift.Learn(pixels);

            // Use clusters to decide class labels
            int[] labels      = clustering.Decide(pixels);
            int   regionCount = labels.DistinctCount();

            // Replace every pixel with its corresponding centroid
            pixels.ApplyInPlace((x, i) => meanShift.Clusters.Modes[labels[i]]);

            // Retrieve the resulting image in a picture box
            Bitmap msResult;

            arrayToImage.Convert(pixels, out msResult);
            Image <Bgr, byte> result = new Image <Bgr, byte>(msResult);

            //EmguCvWindowManager.Display(result, "msResult");

            return(new MeanShiftClusteringResult()
            {
                Image = result,
                Labels = labels,
                RegionCount = regionCount
            });
        }
Example #18
0
        void doInputNormalization()
        {
            ImageToArray imageConverter = new ImageToArray(0, 1);

            double[] tempInput;

            Bitmap imageInput = new Bitmap(pictureBox1.Image);

            imageConverter.Convert(imageInput, out tempInput);

            input.Add(tempInput);
        }
Example #19
0
        private void btnTraining_Click(object sender, EventArgs e)
        {
            double[][] input_data  = new double[Data.getInstance().images.Count][];
            double[][] output_data = new double[Data.getInstance().images.Count][];

            int max = Data.getInstance().classes.Count - 1;
            int min = 0;

            for (int i = 0; i < Data.getInstance().images.Count; i++)
            {
                Bitmap image = Data.getInstance().preprocessing(Data.getInstance().images[i]);

                ImageToArray converter = new ImageToArray(0, 1);
                converter.Convert(image, out input_data[i]);

                output_data[i]    = new double[1];
                output_data[i][0] = Data.getInstance().class_indexes[i];
                output_data[i][0] = 0 + (output_data[i][0] - min) * (1 - 0) / (max - min);
            }

            pca        = new PrincipalComponentAnalysis();
            pca.Method = PrincipalComponentMethod.Center;
            pca.Learn(input_data);
            double[][] input_from_pca = pca.Transform(input_data);

            int a            = 0;
            int output_count = 0;

            while (a < Data.getInstance().classes.Count)
            {
                output_count = a * a;
                a++;
            }

            som_network  = new DistanceNetwork(input_from_pca[0].Count(), output_count);
            som_learning = new SOMLearning(som_network);

            int    max_iteration = 10000;
            double max_error     = 0.0001;

            for (int i = 0; i < max_iteration; i++)
            {
                double error = som_learning.RunEpoch(input_from_pca);
                if (error < max_error)
                {
                    break;
                }
            }

            btnBrowseClustering.Enabled = true;
            btnTraining.Enabled         = false;
        }
Example #20
0
        public double[][] ConvertToArrays(Bitmap[] bitmaps)
        {
            double[][] inputs       = new double[bitmaps.Length][];
            var        imageToArray = new ImageToArray(min: 0, max: 1);

            for (int i = 0; i < inputs.Length; i++)
            {
                imageToArray.Convert(bitmaps[i], out double[] imgArray);
                inputs[i] = imgArray;
                bitmaps[i].Dispose();
            }
            return(inputs);
        }
Example #21
0
        private void showSimilarArt(String picturesPath)
        {
            pbArtDetail.Image = ImagePreprocessing(new Bitmap(picturesPath), 127);

            // Convert image to double
            ImageToArray imageConverter = new ImageToArray();

            double[] data;

            imageConverter.Convert(new Bitmap(pbArtDetail.Image), out data);

            // Convert to PCA
            data = principalComponentAnalysis.Transform(data);

            // Find the similar image
            Network.distanceNetwork.Compute(data);

            // Get nearest neuron
            int winner = Network.distanceNetwork.GetWinner();

            imageListSimilarArt.Images.Clear();
            listViewSimilarArt.Items.Clear();

            for (int i = 0; i < listImages.Count; i++)
            {
                double[] imageData = new double[principalComponentAnalysis.Result.GetLength(1)];

                for (int j = 0; j < principalComponentAnalysis.Result.GetLength(1); j++)
                {
                    imageData[j] = principalComponentAnalysis.Result[i, j];
                }

                Network.distanceNetwork.Compute(imageData);

                int imageWinner = Network.distanceNetwork.GetWinner();

                if (winner == imageWinner)
                {
                    if (listImageNames[i] != picturesPath)
                    {
                        listViewSimilarArt.Groups.Add("groupKey0", "Similar Art");

                        imageListSimilarArt.Images.Add(listImageNames[i], listImages[i]);

                        ListViewItem listViewItem = new ListViewItem(Path.GetFileName(listImageNames[i]), listImageNames[i], listViewSimilarArt.Groups[0]);
                        listViewSimilarArt.Items.Add(listViewItem);
                    }
                }
            }
        }
Example #22
0
        private void ShowImage_Load(object sender, EventArgs e)
        {
            //Stopwatch stopWatch = new Stopwatch();
            //stopWatch.Start();
            FI = folderImage.GetFiles().Where(x => x.FullName.EndsWith(".bmp") || x.FullName.EndsWith(".png") || x.FullName.EndsWith(".jpg")).ToArray();
            var fileNames = FI.Select(x => x.Name);

            listViewImage.Columns.Add("Name");
            listViewImage.Columns[0].Width = listViewImage.Width;
            for (int i = 0; i < fileNames.Count(); i++)
            {
                listViewImage.Items.Add(fileNames.ToArray()[i]);
            }
            LoadImage();
            ImageToArray conv = new ImageToArray(min: 0, max: 1);

            double[] Input;
            conv.Convert(bm, out Input);
            //bm = MakeGrayScale(bm);
            //stopWatch.Stop();
            //var y = stopWatch.ElapsedMilliseconds;
            //var x = ImageToArray(bm);
            //List<double> lst = d.Cast<double>().ToList();
            NeuralNetwork network = new NeuralNetwork(0.00125, new int[] { 2, 4, 1 });

            for (int i = 0; i < 1000; i++)
            {
            }
            var output = network.Run(new double[] { 0, 0 }.ToList());

            MessageBox.Show(output[0].ToString());
            //if (bm.Width + 100 < Screen.PrimaryScreen.Bounds.Width && bm.Height + 100 < Screen.PrimaryScreen.Bounds.Height)
            //{
            //    this.Width = bm.Width + 20;
            //    this.Height = bm.Height + 50;
            //    this.CenterToScreen();
            //    pictureBox1.Width = bm.Width;
            //    pictureBox1.Height = bm.Height;
            //    pictureBox1.Image = bm;
            //}
            //else
            //{
            //    this.Width = bm.Width / 2 + 20;
            //    this.Height = bm.Height / 2 + 40;
            //    this.CenterToScreen();
            //    pictureBox1.Width = bm.Width / 2;
            //    pictureBox1.Height = bm.Height / 2;
            //    pictureBox1.Image = bm;
            //}
        }
Example #23
0
        double[][] extract()
        {
            double[][] hands = new double[dataGridView1.Rows.Count][];
            ImageToArray converter = new ImageToArray(min: -1, max: +1);

            int index = 0;
            foreach (DataGridViewRow row in dataGridView1.Rows)
            {
                Bitmap image = row.Cells["colHand"].Value as Bitmap;
                converter.Convert(image, out hands[index]);
                index++;
            }

            return hands;
        }
Example #24
0
        public void meanShift()
        {
            string basePath = Path.Combine(NUnit.Framework.TestContext.CurrentContext.TestDirectory, "kmeans");

            Directory.CreateDirectory(basePath);

            #region doc_meanshift
            // Load a test image (shown in a picture box below)
            var    sampleImages = new TestImages(path: basePath);
            Bitmap image        = sampleImages.GetImage("airplane.png");

            // ImageBox.Show("Original", image).Hold();

            // Create converters to convert between Bitmap images and double[] arrays
            var imageToArray = new ImageToArray(min: -1, max: +1);
            var arrayToImage = new ArrayToImage(image.Width, image.Height, min: -1, max: +1);

            // Transform the image into an array of pixel values
            double[][] pixels; imageToArray.Convert(image, out pixels);

            // Create a MeanShift algorithm using given bandwidth
            //   and a Gaussian density kernel as kernel function.
            MeanShift meanShift = new MeanShift()
            {
                Kernel    = new GaussianKernel(3),
                Bandwidth = 0.06,

                // We will compute the mean-shift algorithm until the means
                // change less than 0.05 between two iterations of the algorithm
                Tolerance     = 0.05,
                MaxIterations = 10
            };

            // Learn the clusters from the data
            var clusters = meanShift.Learn(pixels);

            // Use clusters to decide class labels
            int[] labels = clusters.Decide(pixels);

            // Replace every pixel with its corresponding centroid
            double[][] replaced = pixels.Apply((x, i) => clusters.Modes[labels[i]]);

            // Retrieve the resulting image (shown in a picture box)
            Bitmap result; arrayToImage.Convert(replaced, out result);

            // ImageBox.Show("Mean-Shift clustering", result).Hold();
            #endregion
        }
Example #25
0
        public void kmeans()
        {
            string basePath = Path.Combine(NUnit.Framework.TestContext.CurrentContext.TestDirectory, "kmeans");

            Directory.CreateDirectory(basePath);

            #region doc_kmeans
            // Load a test image (shown in a picture box below)
            var    sampleImages = new TestImages(path: basePath);
            Bitmap image        = sampleImages.GetImage("airplane.png");

            // ImageBox.Show("Original", image).Hold();

            // Create converters to convert between Bitmap images and double[] arrays
            var imageToArray = new ImageToArray(min: -1, max: +1);
            var arrayToImage = new ArrayToImage(image.Width, image.Height, min: -1, max: +1);

            // Transform the image into an array of pixel values
            double[][] pixels; imageToArray.Convert(image, out pixels);


            // Create a K-Means algorithm using given k and a
            //  square Euclidean distance as distance metric.
            KMeans kmeans = new KMeans(k: 5)
            {
                Distance = new SquareEuclidean(),

                // We will compute the K-Means algorithm until cluster centroids
                // change less than 0.5 between two iterations of the algorithm
                Tolerance = 0.05
            };


            // Learn the clusters from the data
            var clusters = kmeans.Learn(pixels);

            // Use clusters to decide class labels
            int[] labels = clusters.Decide(pixels);

            // Replace every pixel with its corresponding centroid
            double[][] replaced = pixels.Apply((x, i) => clusters.Centroids[labels[i]]);

            // Retrieve the resulting image (shown in a picture box)
            Bitmap result; arrayToImage.Convert(replaced, out result);

            // ImageBox.Show("k-Means clustering", result).Hold();
            #endregion
        }
Example #26
0
 //setting up trained data
 void getTrainedDataArray()
 {
     foreach (var subFolder in Directory.GetDirectories(savedDirectoryName))
     {
         var          label        = new DirectoryInfo(subFolder).Name;
         ImageToArray imageToArray = new ImageToArray();
         foreach (var files in Directory.GetFiles(subFolder))
         {
             var      img = new Bitmap(files);
             double[] imageAsArray;
             imageToArray.Convert(mainForm.Preprocess(img), out imageAsArray);
             trainedData.Add(imageAsArray);
             inputLabel.Add(label);
         }
     }
 }
Example #27
0
        private void button1_Click(object sender, EventArgs e)
        {
            listView1.Items.Clear();
            imageList1.Images.Clear();
            openFileDialog1.Multiselect = false;
            openFileDialog1.Filter      = "Images Files (*.jpg, *jpeg, *.png) | *.jpg; *.jpeg; *.png";

            if (openFileDialog1.ShowDialog() == DialogResult.OK)
            {
                Bitmap img1 = new Bitmap(openFileDialog1.FileName);
                pictureBox1.Image = img1;
            }
            Bitmap img = new Bitmap(pictureBox1.Image);

            img = Data.getInstance().preprocessing(img);

            double[]     input     = new double[10 * 10];
            ImageToArray converter = new ImageToArray(0, 1);

            converter.Convert(img, out input);

            double[] input_from_pca = pca.Transform(input);
            som_network.Compute(input_from_pca);
            double winner = som_network.GetWinner();

            for (int i = 0; i < Data.getInstance().images.Count; i++)
            {
                Bitmap img2 = Data.getInstance().preprocessing(Data.getInstance().images[i]);

                double[] input2 = new double[10 * 10];

                ImageToArray converter2 = new ImageToArray(0, 1);
                converter2.Convert(img2, out input2);

                double[] input_from_pca2 = pca.Transform(input2);
                som_network.Compute(input_from_pca2);
                double winner2 = som_network.GetWinner();

                if (winner == winner2)
                {
                    imageList1.Images.Add(Data.getInstance().images[i]);
                    listView1.Items.Add(Data.getInstance().filenames[i], imageList1.Images.Count - 1);
                }
            }
            MessageBox.Show("Find Simillar Item Success");
        }
Example #28
0
        /// <summary>
        ///   Runs the Mean-Shift algorithm.
        /// </summary>
        ///
        private void runMeanShift()
        {
            int pixelSize = 3;

            // Retrieve the kernel bandwidth
            double sigma = (double)numBandwidth.Value;

            // Load original image
            Bitmap image = Properties.Resources.leaf;

            // Create converters
            ImageToArray imageToArray = new ImageToArray(min: -1, max: +1);
            ArrayToImage arrayToImage = new ArrayToImage(image.Width, image.Height, min: -1, max: +1);

            // Transform the image into an array of pixel values
            double[][] pixels; imageToArray.Convert(image, out pixels);


            // Create a MeanShift algorithm using the given bandwidth
            // and a Gaussian density kernel as the kernel function:

            IRadiallySymmetricKernel kernel = new GaussianKernel(pixelSize);

            var meanShift = new MeanShift(pixelSize, kernel, sigma)
            {
                Tolerance     = 0.05,
                MaxIterations = 10
            };


            // Compute the mean-shift algorithm until the difference
            // in shift vectors between two iterations is below 0.05

            int[] idx = meanShift.Compute(pixels);


            // Replace every pixel with its corresponding centroid
            pixels.ApplyInPlace((x, i) => meanShift.Clusters.Modes[idx[i]]);

            // Show resulting image in the picture box
            Bitmap result; arrayToImage.Convert(pixels, out result);

            pictureBox.Image = result;
        }
Example #29
0
        public static Tile[][] getTiles(Bitmap source, int width, int height)
        {
            int tileWidth  = source.Width / width;
            int tileHeight = source.Height / height;

            Tile[][]     tiles        = new Tile[tileWidth * tileHeight][];
            ImageToArray imageToArray = new ImageToArray(min: -1, max: +1);

            double[][] pixels; imageToArray.Convert(source, out pixels);
            for (int yy = 0; yy < tileHeight; yy++)
            {
                for (int xx = 0; xx < tileWidth; xx++)
                {
                    tiles[yy * tileWidth + xx] = new Tile[] { new Tile(width, height, getPixels(pixels, xx * width, width, yy * height, height, source.Width)) };
                }
            }

            return(tiles);
        }
Example #30
0
        public void bpnnTraining()
        {
            double[][] input_data = new double[Data.instance.images.Count][];
            double[][] output_data = new double[Data.instance.indexClasses.Count][];
            int        max_output = Data.instance.classes.Count - 1, min_output = 0;

            for (int i = 0; i < Data.instance.images.Count; i++)
            {
                //Pilih gambar berwarna
                Bitmap image = new Bitmap(Data.instance.images[i]);
                //Preprocess jadi 10 x 10 hitam putih
                image = Data.instance.preProcess(image);
                // dari pixel 0-255 jadi 0-1
                ImageToArray converter = new ImageToArray(0, 1);
                converter.Convert(image, out input_data[i]);

                output_data[i]    = new double[1];
                output_data[i][0] = Data.instance.indexClasses[i];
                output_data[i][0] = 0 + (output_data[i][0] - min_output) * (1 - 0) / (max_output - min_output);
            }

            bpnnNetwork  = new ActivationNetwork(new SigmoidFunction(), 100, 3, 1);
            bpnnLearning = new BackPropagationLearning(bpnnNetwork);

            //o   Error Goals: 0.000001
            //o   Max Epochs: 1000000

            int    max_iter  = 1000000;
            double max_error = 0.000001;

            for (int i = 0; i < max_iter; i++)
            {
                double error = bpnnLearning.RunEpoch(input_data, output_data);

                if (error < max_error)
                {
                    break;
                }
            }

            bpnnNetwork.Save("an.bin");
        }
Example #31
0
        static void TestMeanShift()
        {
            Bitmap image = Accord.Imaging.Image.FromUrl("https://c1.staticflickr.com/4/3209/2527630511_fae07530c2_b.jpg");

            //ImageBox.Show("Original", image).Hold();

            // Create converters to convert between Bitmap images and double[] arrays
            var imageToArray = new ImageToArray(min: -1, max: +1);
            var arrayToImage = new ArrayToImage(image.Width, image.Height, min: -1, max: +1);

            // Transform the image into an array of pixel values
            double[][] pixels; imageToArray.Convert(image, out pixels);


            // Create a MeanShift algorithm using given bandwidth
            //   and a Gaussian density kernel as kernel function.
            MeanShift meanShift = new MeanShift()
            {
                Kernel    = new EpanechnikovKernel(),
                Bandwidth = 0.1,

                // We will compute the mean-shift algorithm until the means
                // change less than 0.05 between two iterations of the algorithm
                Tolerance     = 0.05,
                MaxIterations = 10
            };

            // Learn the clusters from the data
            var clusters = meanShift.Learn(pixels);

            // Use clusters to decide class labels
            int[] labels = clusters.Decide(pixels);

            // Replace every pixel with its corresponding centroid
            double[][] replaced = pixels.Apply((x, i) => clusters.Modes[labels[i]]);

            // Retrieve the resulting image (shown in a picture box)
            Bitmap result; arrayToImage.Convert(replaced, out result);

            //ImageBox.Show("Mean-Shift clustering", result).Hold();
        }
        public void ConvertTest3()
        {
            double[] pixels = 
            {
                 0, 0, 0, 0,
                 0, 1, 1, 0,
                 0, 1, 1, 0,
                 0, 0, 0, 0,
            };

            ArrayToImage conv1 = new ArrayToImage(width: 4, height: 4);
            Bitmap image;
            conv1.Convert(pixels, out image);
            image = new ResizeNearestNeighbor(16, 16).Apply(image);


            // Obtain a 16x16 bitmap image
            // Bitmap image = ...

            // Show on screen
            // ImageBox.Show(image, PictureBoxSizeMode.Zoom);

            // Create the converter to convert the image to an
            //   array containing only values between 0 and 1 
            ImageToArray conv = new ImageToArray(min: 0, max: 1);

            // Convert the image and store it in the array
            double[] array; conv.Convert(image, out array);

            // Show the array on screen
            // ImageBox.Show(array, 16, 16, PictureBoxSizeMode.Zoom);

            Assert.AreEqual(0, array.Min());
            Assert.AreEqual(1, array.Max());
            Assert.AreEqual(16 * 16, array.Length);
        }
Example #33
0
        public void ConvertTest2()
        {
            Bitmap image = Properties.Resources.image1;

            ImageToArray target = new ImageToArray();

            double[] pixels;
            double[] pixelsExpected =
            {
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 1
                 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, // 2 
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 3
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 4
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 5
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 6
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 7
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 8
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 9
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 11
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 12
                 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, // 13
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 14
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 15
            };


            target.Convert(image, out pixels);

            for (int i = 0; i < pixels.Length; i++)
                    Assert.AreEqual(pixelsExpected[i], pixelsExpected[i]);
        }
Example #34
0
        private void btnFeature_Click(object sender, EventArgs e)
        {
            if (pca == null)
            {
                MessageBox.Show("Please compute the analysis first!");
                return;
            }

            ImageToArray converter = new ImageToArray(min: -1, max: +1);

            int rows = dataGridView3.Rows.Count;
            double[][] inputs = new double[rows][];
            double[][] features = new double[rows][];
            int[] outputs = new int[rows];

            int index = 0;
            foreach (DataGridViewRow row in dataGridView3.Rows)
            {
                Bitmap image = row.Cells["colHand2"].Value as Bitmap;
                int label = (int)row.Cells["colLabel2"].Value;

                double[] input;
                converter.Convert(image, out input);

                double[] feature = pca.Transform(input);

                row.Cells["colProjection"].Value = feature.ToString("N2");

                row.Tag = feature;
                inputs[index] = input;
                features[index] = feature;
                outputs[index] = label;
                index++;
            }

            classifier = new MinimumMeanDistanceClassifier(features, outputs);

            btnClassify.Enabled = true;
        }
        public void ConvertTest4()
        {
            ImageToArray target = new ImageToArray(min: 0, max: 255);
            Bitmap image = Properties.Resources.image3;
            Assert.AreEqual(PixelFormat.Format32bppArgb, image.PixelFormat);

            {
                double[] output;
                double[] outputExpected =
                {
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 0
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 1
                      0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 2 
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 3
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 4
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 5
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 6
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 7
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 8
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 9
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 10
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 11
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 12
                      0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 13
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 14
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 15
                };

                target.Channel = RGB.R;
                target.Convert(image, out output);

                for (int i = 0; i < outputExpected.Length; i++)
                        Assert.AreEqual(outputExpected[i], output[i]);
            }

            {
                double[] output;
                double[] outputExpected =
                {
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 0
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 1
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 0, 0 , // 2 
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 3
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 4
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 5
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 6
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 7
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 8
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 9
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 10
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 11
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 12
                      0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 13
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 14
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 15
                };

                target.Channel = RGB.G;
                target.Convert(image, out output);

                for (int i = 0; i < outputExpected.Length; i++)
                    for (int j = 0; j < outputExpected.Length; j++)
                        Assert.AreEqual(outputExpected[i], output[i]);
            }

            {
                double[] output;
                double[] outputExpected =
                {
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 0
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 1
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 2 
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 3
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 4
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 5
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 6
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 7
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 8
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 9
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 10
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 11
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 12
                      0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 0, 0 , // 13
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 14
                      0, 0,   0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,   0, 0, 0 , // 15
                };

                target.Channel = RGB.B;
                target.Convert(image, out output);

                for (int i = 0; i < outputExpected.Length; i++)
                        Assert.AreEqual(outputExpected[i], output[i]);
            }
        }
Example #36
0
        public void ConvertTest1()
        {

            ArrayToImage target = new ArrayToImage(16, 16);

            double[] pixels = 
            {
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 1
                 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, // 2 
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 3
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 4
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 5
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 6
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 7
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 8
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 9
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 10
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 11
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 12
                 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, // 13
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 14
                 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 15
            };

            Bitmap imageActual;
            target.Convert(pixels, out imageActual);


            double[] actual;
            ImageToArray c = new ImageToArray();
            c.Convert(imageActual, out actual);

            double[] expected;

            Bitmap imageExpected = Accord.Imaging.Image.Clone(Properties.Resources.image1);
            new Invert().ApplyInPlace(imageExpected);
            new Threshold().ApplyInPlace(imageExpected);

            c.Convert(imageExpected, out expected);


            for (int i = 0; i < pixels.Length; i++)
                Assert.AreEqual(actual[i], expected[i]);
        }
Example #37
0
        /// <summary>
        ///   Runs the Mean-Shift algorithm.
        /// </summary>
        /// 
        private void runMeanShift()
        {
            int pixelSize = 3;

            // Retrieve the kernel bandwidth
            double sigma = (double)numBandwidth.Value;

            // Load original image
            Bitmap image = Properties.Resources.leaf;

            // Create converters
            ImageToArray imageToArray = new ImageToArray(min: -1, max: +1);
            ArrayToImage arrayToImage = new ArrayToImage(image.Width, image.Height, min: -1, max: +1);

            // Transform the image into an array of pixel values
            double[][] pixels; imageToArray.Convert(image, out pixels);


            // Create a MeanShift algorithm using the given bandwidth
            // and a Gaussian density kernel as the kernel function:

            IRadiallySymmetricKernel kernel = new GaussianKernel(pixelSize);
            
            var meanShift = new MeanShift(pixelSize, kernel, sigma)
            {
                Tolerance = 0.05,
                MaxIterations = 10
            };

            
            // Compute the mean-shift algorithm until the difference 
            // in shift vectors between two iterations is below 0.05
            
            int[] idx = meanShift.Compute(pixels);


            // Replace every pixel with its corresponding centroid
            pixels.ApplyInPlace((x, i) => meanShift.Clusters.Modes[idx[i]]);

            // Show resulting image in the picture box
            Bitmap result; arrayToImage.Convert(pixels, out result);

            pictureBox.Image = result;
        }