public MlpNeuron(List<Connection> inputs, List<Connection> outputs, FunctionType functionType, ITunableParameterService paramService) { Inputs = inputs; Outputs = outputs; _functionType = functionType; _sigmoidAlpha = paramService.SigmoidAlpha; }
public FunctionApproximator(ITunableParameterService paramService) { _iterations = paramService.Iterations; _trainingSetSize = paramService.TrainingSetSize; _testSetSize = paramService.TestSetSize; _printMovingAverage = paramService.PrintMovingAverage; _averageWindowSize = paramService.AverageWindowSize; _lowerBound = paramService.LowerBound; _upperBound = paramService.UpperBound; _printNetworkWeights = paramService.PrintNetworkWeights; _printWeightsFrequency = paramService.PrintWeightsFrequency; }
public MultiLayerPerceptron(int numInputs, int numOutputs, int numHiddenLayers, int numNeuronsPerHiddenLayer, ITunableParameterService paramService) : base(numInputs, numOutputs) { _numHiddenLayers = numHiddenLayers; _numNeuronsPerHiddenLayer = numNeuronsPerHiddenLayer; _isMomentumUsed = paramService.IsMomentumUsed; _momentumAmount = paramService.MomentumAmount; _learningRate = paramService.LearningRate; _sigmoidAlpha = paramService.SigmoidAlpha; _isAnnealingUsed = paramService.IsAnnealingUsed; _annealingValue = paramService.AnnealingValue; BuildNetwork(); }
public RadialBasisFunctionNetwork(int numInputs, int numOutputs, ITunableParameterService paramService) : base(numInputs, numOutputs) { _numCenters = paramService.NumberOfCenters; _numDimensions = numInputs; _lowerBound = paramService.LowerBound; _upperBound = paramService.UpperBound; _learningRate = paramService.LearningRate; _isMomentumUsed = paramService.IsMomentumUsed; _momentumAmount = paramService.MomentumAmount; _isAnnealingUsed = paramService.IsAnnealingUsed; _annealingValue = paramService.AnnealingValue; CalculateSpacingAndSpread(); BuildNetwork(); }