Example #1
0
        public static void ResizeTensor(TensorProxy tensor, int batch, ITensorAllocator allocator)
        {
            if (tensor.shape[0] == batch &&
                tensor.data != null && tensor.data.batch == batch)
            {
                return;
            }

            tensor.data?.Dispose();
            tensor.shape[0] = batch;

            if (tensor.shape.Length == 4)
            {
                tensor.data = allocator.Alloc(
                    new TensorShape(
                        batch,
                        (int)tensor.shape[1],
                        (int)tensor.shape[2],
                        (int)tensor.shape[3]));
            }
            else
            {
                tensor.data = allocator.Alloc(
                    new TensorShape(
                        batch,
                        (int)tensor.shape[tensor.shape.Length - 1]));
            }
        }
Example #2
0
        public void Apply(TensorProxy tensorProxy, IEnumerable <AgentIdActionPair> actions)
        {
            //var tensorDataProbabilities = tensorProxy.Data as float[,];
            var idActionPairList   = actions as List <AgentIdActionPair> ?? actions.ToList();
            var batchSize          = idActionPairList.Count;
            var actionValues       = new float[batchSize, m_ActionSize.Length];
            var startActionIndices = Utilities.CumSum(m_ActionSize);

            for (var actionIndex = 0; actionIndex < m_ActionSize.Length; actionIndex++)
            {
                var nBranchAction = m_ActionSize[actionIndex];
                var actionProbs   = new TensorProxy()
                {
                    valueType = TensorProxy.TensorType.FloatingPoint,
                    shape     = new long[] { batchSize, nBranchAction },
                    data      = m_Allocator.Alloc(new TensorShape(batchSize, nBranchAction))
                };

                for (var batchIndex = 0; batchIndex < batchSize; batchIndex++)
                {
                    for (var branchActionIndex = 0;
                         branchActionIndex < nBranchAction;
                         branchActionIndex++)
                    {
                        actionProbs.data[batchIndex, branchActionIndex] =
                            tensorProxy.data[batchIndex, startActionIndices[actionIndex] + branchActionIndex];
                    }
                }

                var outputTensor = new TensorProxy()
                {
                    valueType = TensorProxy.TensorType.FloatingPoint,
                    shape     = new long[] { batchSize, 1 },
                    data      = m_Allocator.Alloc(new TensorShape(batchSize, 1))
                };

                Eval(actionProbs, outputTensor, m_Multinomial);

                for (var ii = 0; ii < batchSize; ii++)
                {
                    actionValues[ii, actionIndex] = outputTensor.data[ii, 0];
                }
                actionProbs.data.Dispose();
                outputTensor.data.Dispose();
            }
            var agentIndex = 0;

            foreach (var idActionPair in idActionPairList)
            {
                var actionVal = new float[m_ActionSize.Length];
                for (var j = 0; j < m_ActionSize.Length; j++)
                {
                    actionVal[j] = actionValues[agentIndex, j];
                }
                idActionPair.action.Invoke(new AgentAction {
                    vectorActions = actionVal
                });
                agentIndex++;
            }
        }
Example #3
0
        public void Apply(TensorProxy tensorProxy, Dictionary <Agent, AgentInfo> agentInfo)
        {
            //var tensorDataProbabilities = tensorProxy.Data as float[,];
            var batchSize          = agentInfo.Keys.Count;
            var actions            = new float[batchSize, m_ActionSize.Length];
            var startActionIndices = Utilities.CumSum(m_ActionSize);

            for (var actionIndex = 0; actionIndex < m_ActionSize.Length; actionIndex++)
            {
                var nBranchAction = m_ActionSize[actionIndex];
                var actionProbs   = new TensorProxy()
                {
                    valueType = TensorProxy.TensorType.FloatingPoint,
                    shape     = new long[] { batchSize, nBranchAction },
                    data      = m_Allocator.Alloc(new TensorShape(batchSize, nBranchAction))
                };

                for (var batchIndex = 0; batchIndex < batchSize; batchIndex++)
                {
                    for (var branchActionIndex = 0;
                         branchActionIndex < nBranchAction;
                         branchActionIndex++)
                    {
                        actionProbs.data[batchIndex, branchActionIndex] =
                            tensorProxy.data[batchIndex, startActionIndices[actionIndex] + branchActionIndex];
                    }
                }

                var outputTensor = new TensorProxy()
                {
                    valueType = TensorProxy.TensorType.FloatingPoint,
                    shape     = new long[] { batchSize, 1 },
                    data      = m_Allocator.Alloc(new TensorShape(batchSize, 1))
                };

                Eval(actionProbs, outputTensor, m_Multinomial);

                for (var ii = 0; ii < batchSize; ii++)
                {
                    actions[ii, actionIndex] = outputTensor.data[ii, 0];
                }
                actionProbs.data.Dispose();
                outputTensor.data.Dispose();
            }
            var agentIndex = 0;

            foreach (var agent in agentInfo.Keys)
            {
                var action = new float[m_ActionSize.Length];
                for (var j = 0; j < m_ActionSize.Length; j++)
                {
                    action[j] = actions[agentIndex, j];
                }
                agent.UpdateVectorAction(action);
                agentIndex++;
            }
        }
Example #4
0
 public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable <AgentInfoSensorsPair> infos)
 {
     tensorProxy.shape = new long[0];
     tensorProxy.data?.Dispose();
     tensorProxy.data    = m_Allocator.Alloc(new TensorShape(1, 1));
     tensorProxy.data[0] = 1;
 }
Example #5
0
 public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary <Agent, AgentInfo> agentInfo)
 {
     tensorProxy.shape = new long[0];
     tensorProxy.data?.Dispose();
     tensorProxy.data    = m_Allocator.Alloc(new TensorShape(1, 1));
     tensorProxy.data[0] = 1;
 }
Example #6
0
        // @TODO: choose approach to handle case when tensors after Flatten/Reshape are written into OR taken ownership of
        // 1) owns data, copy on PrepareCacheForAccess() and PinForWrite()
        // 2) always copy data in Flatten()/Reshape(), remove from Tensor interface
        // 2) always copy data in Flatten()/Reshape(), implement ICloneable for GPU ITensorData

        /// <summary>
        /// Create a flattened copy of the current Tensor ie of shape [B,1,1,H*W*CH]
        /// </summary>
        public Tensor Flatten()
        {
            var newShape = shape.Flatten();

            Tensor copy;

            if (m_TensorAllocator != null)
            {
                copy = m_TensorAllocator.Alloc(newShape, m_TensorOnDevice);
            }
            else
            {
                copy = new Tensor(newShape, m_TensorOnDevice);
            }

            copy.name           = $"flatten of {name}";
            copy.m_Cache        = m_Cache;
            copy.m_CacheIsDirty = m_CacheIsDirty;
            return(copy);
        }
        // @TODO: choose approach to handle case when tensors after Flatten/Reshape are written into OR taken ownership of
        // 1) owns data, copy on PrepareCacheForAccess() and PinForWrite()
        // 2) always copy data in Flatten()/Reshape(), remove from Tensor interface
        // 2) always copy data in Flatten()/Reshape(), implement ICloneable for GPU ITensorData

        private Tensor ShallowCopy(TensorShape newShape, string newName)
        {
            Tensor copy;

            if (m_TensorAllocator != null)
            {
                copy = m_TensorAllocator.Alloc(newShape, m_TensorOnDevice);
            }
            else
            {
                copy = new Tensor(newShape, m_TensorOnDevice);
            }

            copy.name           = newName;
            copy.m_Cache        = m_Cache;
            copy.m_CacheIsDirty = m_CacheIsDirty;

            return(copy);
        }
 public void Generate(TensorProxy tensorProxy, int batchSize, IEnumerable <Agent> agents)
 {
     tensorProxy.data?.Dispose();
     tensorProxy.data    = m_Allocator.Alloc(new TensorShape(1, 1));
     tensorProxy.data[0] = batchSize;
 }
Example #9
0
 public void Generate(TensorProxy tensorProxy, int batchSize, IList <AgentInfoSensorsPair> infos)
 {
     tensorProxy.data?.Dispose();
     tensorProxy.data    = m_Allocator.Alloc(new TensorShape(1, 1));
     tensorProxy.data[0] = batchSize;
 }
        public void Apply(TensorProxy tensorProxy, IEnumerable <int> actionIds, Dictionary <int, float[]> lastActions)
        {
            //var tensorDataProbabilities = tensorProxy.Data as float[,];
            var idActionPairList   = actionIds as List <int> ?? actionIds.ToList();
            var batchSize          = idActionPairList.Count;
            var actionValues       = new float[batchSize, m_ActionSize.Length];
            var startActionIndices = Utilities.CumSum(m_ActionSize);

            for (var actionIndex = 0; actionIndex < m_ActionSize.Length; actionIndex++)
            {
                var nBranchAction = m_ActionSize[actionIndex];
                var actionProbs   = new TensorProxy()
                {
                    valueType = TensorProxy.TensorType.FloatingPoint,
                    shape     = new long[] { batchSize, nBranchAction },
                    data      = m_Allocator.Alloc(new TensorShape(batchSize, nBranchAction))
                };

                for (var batchIndex = 0; batchIndex < batchSize; batchIndex++)
                {
                    for (var branchActionIndex = 0;
                         branchActionIndex < nBranchAction;
                         branchActionIndex++)
                    {
                        actionProbs.data[batchIndex, branchActionIndex] =
                            tensorProxy.data[batchIndex, startActionIndices[actionIndex] + branchActionIndex];
                    }
                }

                var outputTensor = new TensorProxy()
                {
                    valueType = TensorProxy.TensorType.FloatingPoint,
                    shape     = new long[] { batchSize, 1 },
                    data      = m_Allocator.Alloc(new TensorShape(batchSize, 1))
                };

                Eval(actionProbs, outputTensor, m_Multinomial);

                for (var ii = 0; ii < batchSize; ii++)
                {
                    actionValues[ii, actionIndex] = outputTensor.data[ii, 0];
                }
                actionProbs.data.Dispose();
                outputTensor.data.Dispose();
            }
            var agentIndex = 0;

            foreach (int agentId in actionIds)
            {
                if (lastActions.ContainsKey(agentId))
                {
                    var actionVal = lastActions[agentId];
                    if (actionVal == null)
                    {
                        actionVal            = new float[m_ActionSize.Length];
                        lastActions[agentId] = actionVal;
                    }
                    for (var j = 0; j < m_ActionSize.Length; j++)
                    {
                        actionVal[j] = actionValues[agentIndex, j];
                    }
                }
                agentIndex++;
            }
        }
Example #11
0
 public void Generate(TensorProxy tensorProxy, int batchSize, Dictionary <Agent, AgentInfo> agentInfo)
 {
     tensorProxy.Data    = _allocator.Alloc(new TensorShape(1, 1));
     tensorProxy.Data[0] = batchSize;
 }