public SparseMatcher(ISparseDistance distance, IReworder reworder, IReader reader, ITokenizer tokenizer, string encyclopediaFilePath) { _distance = distance; _reader = reader; _reworder = reworder; _tokenizer = tokenizer; _encyclopediaFilePath = encyclopediaFilePath; }
public static void MetricRun(IReworder reworder, IReader reader, ITokenizer tok, ISparseDistance dist, int nbNeighbours, bool train, bool proba, string questionFilePath, string encyclopediaFilePath, string outFolder) { string encyclopediaName = Path.GetFileNameWithoutExtension(encyclopediaFilePath); string summary = "Metric_" + reworder.GetType().Name + "_" + reader.GetType().Name + "_" + tok.GetType().Name + "_" + dist.GetType().Name + "_" + nbNeighbours.ToString() + "_" + encyclopediaName; Console.Write("\n" + summary); SparseMatcher robot = new SparseMatcher(dist, reworder, reader, tok, encyclopediaFilePath); string[] answers = robot.Answer(nbNeighbours, questionFilePath, train, proba); if (train) { EvaluateAndPrintScores(questionFilePath, answers); } else { string[] ids = TextToData.ImportColumn(questionFilePath, 0); Submissions.Write(answers, ids, outFolder + summary + ".csv"); } Console.WriteLine(); }