public Problem(IComponentInvalidator <T> invalidator, IHeuristicsCalculator <T> calculator, ISolutionQualityEvaluator <T> evaluator, ILocalSearch <T> localSearch) { this._invalidator = invalidator; this._calculator = calculator; this._evaluator = evaluator; this._localSearch = localSearch; }
public static BayesianMultinetClassifier CreateGMNAntBayesianClassification(int seed, int iterations, int colonySize, int convergence, int dependencies, Dataset trainingSet, ISolutionQualityEvaluator <Edge> qualityEvaluator, IHeuristicValueCalculator <Edge> calculator, bool fireEvents) { DataMining.Utilities.RandomUtility.Initialize(seed); CyclicRelationInvalidator invalidator = new CyclicRelationInvalidator(); BackwardRemovalLocalSearch localSearch = new BackwardRemovalLocalSearch(qualityEvaluator); Problem <Edge> problem = new Problem <Edge>(invalidator, calculator, qualityEvaluator, localSearch); ABCMinerGMN mnabcminer = new ABCMinerGMN(iterations, colonySize, convergence, problem, dependencies, trainingSet); if (fireEvents) { mnabcminer.OnPostAntSolutionContruction += new EventHandler(abclassifier_OnPostAntSolutionContruction); mnabcminer.OnPostColonyIteration += new EventHandler(GMNabclassifier_OnPostColonyIteration); } mnabcminer.Work(); BayesianNetworks.Model.BayesianMultinetClassifier mnbclassifier = mnabcminer.MultinetBayesianClassifier; return(mnbclassifier); }
public DRLocalSearch(ISolutionQualityEvaluator <DRComponent> qualityEvaluator) { this._qualityEvaluator = qualityEvaluator; }
public BackwardRemovalLocalSearch(ISolutionQualityEvaluator <Edge> qualityEvaluator) { this._classificationQualityEvaluator = qualityEvaluator; }
public VariableTypeAssignmentLocalSearch(ISolutionQualityEvaluator <VariableTypeAssignment> qualityEvaluator) { this._classificationQualityEvaluator = qualityEvaluator; }
public DefaultRemovalLocalSearch(ISolutionQualityEvaluator <T> qualityEvaluator) { this._qualityEvaluator = qualityEvaluator; }