Example #1
0
        public void AddNodeToBaGraph()
        {
            // Get list of nodes before new node is added
            var currNodes = _nodesDictionary.Values.ToList(); // we will choose M nodes from this list

            GraphNode newNode = NewGraphNode("n" + nextId++);

            // Create a "pool" of the sum of all degrees
            var totalDegrees = currNodes.Sum(n => Math.Pow(n.Degree, Exp));

            // now choose its neighbors per the BA algorithm:
            for (int i = 0; i < M; i++)
            {
                double val = random.NextDouble() * totalDegrees; // Some point in this "pool"
                // Move throgh the "pool" node by node until we get to the node that is at this number's location
                double    curr         = 0;
                GraphNode selectedNode = null;
                foreach (var n in currNodes)
                {
                    if (curr <= val && curr + Math.Pow(n.Degree, Exp) > val)
                    {
                        selectedNode  = (GraphNode)n;
                        totalDegrees -= Math.Pow(selectedNode.Degree, Exp);
                        AddEdge(selectedNode, newNode);
                        currNodes.Remove(selectedNode);
                        break;
                    }
                    curr += Math.Pow(n.Degree, Exp);
                }
            }
        }
Example #2
0
        public ParticleSet PerceptionUpdate(string perception, IRandomizer r)
        {
            // compute Particle Weight
            foreach (Particle p in particles)
            {
                double particleWeight = hmm.SensorModel.Get(p.State, perception);
                p.Weight = particleWeight;
            }

            // weighted sample to create new ParticleSet
            ParticleSet result = new ParticleSet(hmm);

            while (result.Count != Count)
            {
                foreach (Particle p in particles)
                {
                    double probability = r.NextDouble();
                    if (probability <= p.Weight)
                    {
                        if (result.Count < Count)
                        {
                            result.Add(new Particle(p.State, p.Weight));
                        }
                    }
                }
            }
            return(result);
        }
Example #3
0
        public double[] LikelihoodWeighting(string X,
                                            Dictionary <string, bool?> evidence, int numberOfSamples,
                                            IRandomizer r)
        {
            var retval = new double[2];

            for (int i = 0; i < numberOfSamples; i++)
            {
                var x             = new Dictionary <string, bool?>();
                var w             = 1.0;
                var bayesNetNodes = this.GetVariableNodes();
                foreach (BayesNetNode node in bayesNetNodes)
                {
                    if (evidence[node.Variable] != null)
                    {
                        w *= node.ProbabilityOf(x);
                        x[node.Variable] = evidence[node.Variable];
                    }
                    else
                    {
                        x[node.Variable] = node.IsTrueFor(r.NextDouble(), x);
                    }
                }
                bool?queryValue = (x[X]);
                if (queryValue == true)
                {
                    retval[0] += w;
                }
                else
                {
                    retval[1] += w;
                }
            }
            return(Util.Util.Normalize(retval));
        }
Example #4
0
        /// <summary>
        /// Products destroyed by decay.
        /// </summary>
        /// <param name="amount">The amount being checked against.</param>
        /// <param name="MaintenanceMet">The percent of maintenance met.</param>
        /// <returns>The number of failed products.</returns>
        public double FailedProducts(double amount, double MaintenanceMet)
        {
            if (amount <= 0)
            {
                throw new ArgumentOutOfRangeException("Amount bust be greater than 0.");
            }
            if (MaintenanceMet < 0 || MaintenanceMet > 1)
            {
                throw new ArgumentOutOfRangeException("Maintenance Met must be between 0 and 1.");
            }

            // get the current failure chance, modified by maintenance met.
            var currentFailChance = DailyFailureChance * (2 - MaintenanceMet);

            // Get the percent of failure today,
            // stopping at zero so new items don't magically come into existance.
            var normalizedFailure = Math.Max(randomizer.Normal(1, 1) * currentFailChance, 0);

            // How many failed today.
            var randFailures = Math.Floor(normalizedFailure * amount);

            // Get an additional base chance that something break to push towards failure.
            var baseResult = randomizer.NextDouble() >= currentFailChance ? 0 : 1;

            // Return the sum of our random Failures and our base, capping at the total amount for safety.
            return(Math.Min(amount, randFailures + baseResult));
        }
        public MoveList Get(IRandomizer r)
        {
            var d  = Math.Round(r.NextDouble() * 100, 2, MidpointRounding.AwayFromZero);
            var ml = _items.Single(t => t.LowerIndex <= d && t.HigherIndex >= d).MoveList;

            _moves.Remove(ml);
            CalculateFitnesses();
            return(ml);
        }
Example #6
0
        private bool TruthValue(double[] ds, IRandomizer r)
        {
            double value = r.NextDouble();

            if (value < ds[0])
            {
                return(true);
            }
            return(false);
        }
Example #7
0
        public Dictionary <string, bool?> GetPriorSample(IRandomizer r)
        {
            var h             = new Dictionary <string, bool?>();
            var bayesNetNodes = this.GetVariableNodes();

            foreach (var node in bayesNetNodes)
            {
                h[node.Variable] = node.IsTrueFor(r.NextDouble(), h);
            }
            return(h);
        }
        public ParticleSet ToParticleSet(HiddenMarkovModel hmm,
                                         IRandomizer randomizer, int numberOfParticles)
        {
            ParticleSet result = new ParticleSet(hmm);

            for (int i = 0; i < numberOfParticles; i++)
            {
                double rvalue = randomizer.NextDouble();
                string state  = this.GetStateForRandomNumber(rvalue);
                result.Add(new Particle(state, 0));
            }
            return(result);
        }
Example #9
0
        private Particle GenerateNewParticleWithRandomVelocity(Vector2 position, float height, float width,
                                                               Vector2 gravity, Color[] colors, TimeSpan lifeTime)
        {
            var velocity = new Vector2(
                75f * (_randomizer.NextDouble() * 2 - 1),
                75f * (_randomizer.NextDouble() * 2 - 1));

            return(GenerateNewParticle(position, height, width, velocity, gravity, colors, lifeTime));
        }
Example #10
0
        public ParticleSet GenerateParticleSetForPredictedState(string action,
                                                                IRandomizer randomizer)
        {
            ParticleSet predictedParticleSet = new ParticleSet(this.hmm);

            foreach (Particle p in particles)
            {
                string newState = hmm.TransitionModel.GetStateForProbability(
                    p.State, action, randomizer.NextDouble());

                Particle generatedParticle = new Particle(newState);
                predictedParticleSet.Add(generatedParticle);
            }
            return(predictedParticleSet);
        }
Example #11
0
        private Dictionary <string, bool> CreateRandomEvent(IList <string> nonEvidenceVariables, Dictionary <string, bool> evidence, IRandomizer r)
        {
            var table     = new Dictionary <string, bool>();
            var variables = this.GetVariables();

            foreach (var variable in variables)
            {
                if (nonEvidenceVariables.Contains(variable))
                {
                    var value = r.NextDouble() <= 0.5 ? true : false;
                    table[variable] = value;
                }
                else
                {
                    table[variable] = evidence[variable];
                }
            }
            return(table);
        }
Example #12
0
        /// <summary>
        /// Randomly selects an item from a dictionary based on a certain probability per item.
        /// </summary>
        /// <typeparam name="T">The type of the item to select.</typeparam>
        /// <param name="probabilities">The items with the given probabilities.</param>
        /// <param name="randomizer">The randomizer instance to use.</param>
        /// <returns>A randomly selected item.</returns>
        public static T DrawRandomly <T>(IDictionary <T, double> probabilities, IRandomizer randomizer)
        {
            // Get random value
            double randomValue = randomizer.NextDouble();
            // Select one just in case
            T selectedElement = probabilities.Keys.OrderBy(e => probabilities[e]).First();

            // Randomly select an element
            foreach (var prob in probabilities.OrderBy(p => p.Value))
            {
                if (prob.Value > randomValue)
                {
                    selectedElement = prob.Key; break;
                }
                randomValue -= prob.Value;
            }
            // Return the randomly selected element
            return(selectedElement);
        }
Example #13
0
 /// <summary>
 /// Returns a random double greater or equal to 0 and less
 /// than double.MaxValue
 /// </summary>
 /// <param name="r"></param>
 /// <returns></returns>
 public static double NextDouble(this IRandomizer r) => r.NextDouble(0, double.MaxValue);
Example #14
0
        /// <summary>
        /// Grows the population, prioritizing those which are happiest/most successful over others.
        /// </summary>
        public void PopGrowth()
        {
            // The average growth we achieve each day.
            var popGrowth = 0.01; // to be divided later represents one year growth average.

            // Get the success of the total populous.
            var lifeSat  = Populous.LifeNeedsSatisfaction();
            var dailySat = Populous.DailyNeedsSatisfaction();

            // modify growth by satisfaction.
            if (lifeSat >= 0.99)
            { // Effectively totally satisfied.
                // The higher the Daily need Satisfaction, the greater the pop growth.
                popGrowth += 0.01 * dailySat;
            }
            else
            {                                      // Life sat not satisfied, remove 3 times the missing life need satisfaction.
                popGrowth -= 0.03 * (1 - lifeSat); // This bottoms out at -0.02.
            }

            // Randomize growth today.
            var variance = rand.NextDouble(-0.01, 0.01); // -0.01 to 0.01

            popGrowth += variance;

            // Get the new pops to add (divide by our year length)
            var newPops = TotalPopulation * popGrowth / 360;

            // add fractional pops to the carryover growth
            carryoverGrowth += newPops % 1;

            // remove fraction from newPops
            newPops -= newPops % 1;

            // if carry over growth greater than 1 (positive or negative)
            if (Math.Abs(carryoverGrowth) > 1)
            {
                // add (or remove) the whole number value of carry over.
                newPops += carryoverGrowth - (carryoverGrowth % 1);

                // update carryoverGrowth
                carryoverGrowth = carryoverGrowth % 1;
            }

            // Get pops ordered by success (descending order)
            var popsBySuccess = Populous.Pops.OrderByDescending(x => x.Success());

            // get total weight of the populous (all positive values, no negatives)
            double totalWeight = 0;

            foreach (var pop in popsBySuccess)
            {
                // get the success
                totalWeight += pop.Success();
            }

            // Now, we figure out where to put the pops.
            foreach (var pop in popsBySuccess)
            {
                // get pop's success again
                var success = pop.Success();

                // if pop is not successful, regardless of reason, GTFO, failing pops don't grow
                // and if the pop is not successful, no following pops will be either.
                if (success <= 0.5)
                {
                    break;
                }

                // get pop growth, divided by weight, and multiplied by success
                var born = newPops / totalWeight * success;

                // modify up or down by 50%
                born *= (0.5 + rand.NextDouble());

                // remove hanging decimals
                born -= born % 1;

                // add new pops to group
                pop.AddPop(born);

                // remove born from new pops
                newPops -= born;

                // remove the success from the total weight
                totalWeight -= success;
            }

            // any remainder pop, just add to the most successful pop.
            popsBySuccess.First().AddPop(newPops - (newPops % 1)); // any extra just drop.
        }
        public void Deploy()
        {
            if (!isInitialized)
                throw new InvalidOperationException("RandomDeployer not initialized!");

            List<XYDoubleLocation> pointList = new List<XYDoubleLocation>();

            rand = randFactory.CreateRandomizer();

            bool continueFlag;
            XYDoubleLocation initial, final, current;
            initial = (XYDoubleLocation)field[0];
            final = (XYDoubleLocation)field[1];
            current = new XYDoubleLocation();

            // Sink
            current = new XYDoubleLocation(final.X, (final.Y - initial.Y)/2);
            current.SetField(field);
            nodes.AddNode(nodeFactory.CreateNode(current));
            pointList.Add(current);
            nodes.GetNodeByID(0).IsSink = true;

            // Sources
            for (int i = 1; i < 6; i++)
            {
                current = new XYDoubleLocation(initial.X, (i-1)*(final.Y-initial.Y)/4);
                current.SetField(field);
                nodes.AddNode(nodeFactory.CreateNode(current));
                pointList.Add(current);
            }

            // Node Field
            for (int i = 6; i < numNodes; i++)
            {
                continueFlag = false;
                while (!continueFlag)
                {
                    continueFlag = true;
                    current = new XYDoubleLocation(
                        rand.NextDouble() * (final.X - initial.X - 2 * padding) + initial.X + padding,
                        rand.NextDouble() * (final.Y - initial.Y - 2 * padding) + initial.Y + padding);
                    foreach (XYDoubleLocation point in pointList)
                    {
                        if (current.Distance(point) < minDistance)
                            continueFlag = false;
                    }
                }
                pointList.Add(current);
                current.SetField(field);
                nodes.AddNode(nodeFactory.CreateNode(current));
            }
        }
Example #16
0
 private String DetermineDirectionOfActualMovement(
     String commandedDirection, IRandomizer r)
 {
     return(DetermineDirectionOfActualMovement(commandedDirection, r
                                               .NextDouble()));
 }
Example #17
0
 /// <summary>
 /// Returns a random double greater or equal to the supplied minValue and less
 /// than the supplied maxValue
 /// </summary>
 /// <param name="r"></param>
 /// <param name="minValue"></param>
 /// <param name="maxValue"></param>
 /// <returns></returns>
 public static long NextLong(this IRandomizer r, long minValue, long maxValue) =>
 Convert.ToInt64((maxValue * 1.0 - minValue * 1.0) * r.NextDouble(0, 1) + minValue * 1.0);
Example #18
0
 /// <summary>
 /// Returns a random double greater or equal to 0 and less
 /// than the supplied maxValue
 /// </summary>
 /// <param name="r"></param>
 /// <param name="maxValue"></param>
 /// <returns></returns>
 public static double NextDouble(this IRandomizer r, double maxValue) => r.NextDouble(0, maxValue);