Example #1
0
        /// <summary>Evaluation for rankings of items</summary>
        /// <remarks>
        /// User-item combinations that appear in both sets are ignored for the test set, and thus in the evaluation.
        /// The evaluation measures are listed in the ItemPredictionMeasures property.
        /// Additionally, 'num_users' and 'num_items' report the number of users that were used to compute the results
        /// and the number of items that were taken into account.
        ///
        /// Literature:
        ///   C. Manning, P. Raghavan, H. Schütze: Introduction to Information Retrieval, Cambridge University Press, 2008
        /// </remarks>
        /// <param name="recommender">item recommender</param>
        /// <param name="test">test cases</param>
        /// <param name="train">training data</param>
        /// <param name="relevant_users">a collection of integers with all relevant users</param>
        /// <param name="relevant_items">a collection of integers with all relevant items</param>
        /// <returns>a dictionary containing the evaluation results</returns>
        static public Dictionary <string, double> Evaluate(
            IItemRecommender recommender,
            IPosOnlyFeedback test,
            IPosOnlyFeedback train,
            ICollection <int> relevant_users,
            ICollection <int> relevant_items)
        {
            if (train.Overlap(test) > 0)
            {
                Console.Error.WriteLine("WARNING: Overlapping train and test data");
            }

            // compute evaluation measures
            double auc_sum     = 0;
            double map_sum     = 0;
            double prec_5_sum  = 0;
            double prec_10_sum = 0;
            double prec_15_sum = 0;
            double ndcg_sum    = 0;
            int    num_users   = 0;

            foreach (int user_id in relevant_users)
            {
                var correct_items = new HashSet <int>(test.UserMatrix[user_id]);
                correct_items.IntersectWith(relevant_items);

                // the number of items that are really relevant for this user
                var relevant_items_in_train = new HashSet <int>(train.UserMatrix[user_id]);
                relevant_items_in_train.IntersectWith(relevant_items);
                int num_eval_items = relevant_items.Count - relevant_items_in_train.Count();

                // skip all users that have 0 or #relevant_items test items
                if (correct_items.Count == 0)
                {
                    continue;
                }
                if (num_eval_items - correct_items.Count == 0)
                {
                    continue;
                }

                num_users++;
                int[] prediction = Prediction.PredictItems(recommender, user_id, relevant_items);

                auc_sum     += AUC(prediction, correct_items, train.UserMatrix[user_id]);
                map_sum     += MAP(prediction, correct_items, train.UserMatrix[user_id]);
                ndcg_sum    += NDCG(prediction, correct_items, train.UserMatrix[user_id]);
                prec_5_sum  += PrecisionAt(prediction, correct_items, train.UserMatrix[user_id], 5);
                prec_10_sum += PrecisionAt(prediction, correct_items, train.UserMatrix[user_id], 10);
                prec_15_sum += PrecisionAt(prediction, correct_items, train.UserMatrix[user_id], 15);

                if (prediction.Length != relevant_items.Count)
                {
                    throw new Exception("Not all items have been ranked.");
                }

                if (num_users % 1000 == 0)
                {
                    Console.Error.Write(".");
                }
                if (num_users % 20000 == 0)
                {
                    Console.Error.WriteLine();
                }
            }

            var result = new Dictionary <string, double>();

            result["AUC"]       = auc_sum / num_users;
            result["MAP"]       = map_sum / num_users;
            result["NDCG"]      = ndcg_sum / num_users;
            result["prec@5"]    = prec_5_sum / num_users;
            result["prec@10"]   = prec_10_sum / num_users;
            result["prec@15"]   = prec_15_sum / num_users;
            result["num_users"] = num_users;
            result["num_lists"] = num_users;
            result["num_items"] = relevant_items.Count;

            return(result);
        }
Example #2
0
		/// <summary>Evaluation for rankings of filtered items</summary>
		/// <remarks>
		/// </remarks>
		/// <param name="recommender">item recommender</param>
		/// <param name="test">test cases</param>
		/// <param name="train">training data</param>
		/// <param name="item_attributes">the item attributes to be used for filtering</param>
		/// <param name="relevant_users">a collection of integers with all relevant users</param>
		/// <param name="relevant_items">a collection of integers with all relevant items</param>
		/// <returns>a dictionary containing the evaluation results</returns>
		static public Dictionary<string, double> Evaluate(
			IItemRecommender recommender,
			IPosOnlyFeedback test,
			IPosOnlyFeedback train,
		    SparseBooleanMatrix item_attributes,
		    ICollection<int> relevant_users,
			ICollection<int> relevant_items)
		{
			if (train.Overlap(test) > 0)
				Console.Error.WriteLine("WARNING: Overlapping train and test data");

			SparseBooleanMatrix items_by_attribute = (SparseBooleanMatrix) item_attributes.Transpose();

			// compute evaluation measures
			double auc_sum     = 0;
			double map_sum     = 0;
			double prec_5_sum  = 0;
			double prec_10_sum = 0;
			double prec_15_sum = 0;
			double ndcg_sum    = 0;

			// for counting the users and the evaluation lists
			int num_lists = 0;
			int num_users = 0;
			int last_user_id = -1;

			foreach (int user_id in relevant_users)
			{
				var filtered_items = GetFilteredItems(user_id, test, item_attributes);

				foreach (int attribute_id in filtered_items.Keys)
				{
					// TODO optimize this a bit, currently it is quite naive
					var relevant_filtered_items = new HashSet<int>(items_by_attribute[attribute_id]);
					relevant_filtered_items.IntersectWith(relevant_items);

					var correct_items = new HashSet<int>(filtered_items[attribute_id]);
					correct_items.IntersectWith(relevant_filtered_items);

					// the number of items that are really relevant for this user
					var relevant_items_in_train = new HashSet<int>(train.UserMatrix[user_id]);
					relevant_items_in_train.IntersectWith(relevant_filtered_items);
					int num_eval_items = relevant_filtered_items.Count - relevant_items_in_train.Count();

					// skip all users that have 0 or #relevant_filtered_items test items
					if (correct_items.Count == 0)
						continue;
					if (num_eval_items - correct_items.Count == 0)
						continue;

					// counting stats
					num_lists++;
					if (last_user_id != user_id)
					{
						last_user_id = user_id;
						num_users++;
					}

					// evaluation
					int[] prediction = Prediction.PredictItems(recommender, user_id, relevant_filtered_items);

					auc_sum     += Items.AUC(prediction, correct_items, train.UserMatrix[user_id]);
					map_sum     += Items.MAP(prediction, correct_items, train.UserMatrix[user_id]);
					ndcg_sum    += Items.NDCG(prediction, correct_items, train.UserMatrix[user_id]);
					prec_5_sum  += Items.PrecisionAt(prediction, correct_items, train.UserMatrix[user_id],  5);
					prec_10_sum += Items.PrecisionAt(prediction, correct_items, train.UserMatrix[user_id], 10);
					prec_15_sum += Items.PrecisionAt(prediction, correct_items, train.UserMatrix[user_id], 15);

					if (prediction.Length != relevant_filtered_items.Count)
						throw new Exception("Not all items have been ranked.");

					if (num_lists % 1000 == 0)
						Console.Error.Write(".");
					if (num_lists % 20000 == 0)
						Console.Error.WriteLine();
				}
			}

			var result = new Dictionary<string, double>();
			result.Add("AUC",     auc_sum / num_lists);
			result.Add("MAP",     map_sum / num_lists);
			result.Add("NDCG",    ndcg_sum / num_lists);
			result.Add("prec@5",  prec_5_sum / num_lists);
			result.Add("prec@10", prec_10_sum / num_lists);
			result.Add("prec@15", prec_15_sum / num_lists);
			result.Add("num_users", num_users);
			result.Add("num_lists", num_lists);
			result.Add("num_items", relevant_items.Count);

			return result;
		}
Example #3
0
        /// <summary>Evaluation for rankings of items</summary>
        /// <remarks>
        /// User-item combinations that appear in both sets are ignored for the test set, and thus in the evaluation.
        /// The evaluation measures are listed in the ItemPredictionMeasures property.
        /// Additionally, 'num_users' and 'num_items' report the number of users that were used to compute the results
        /// and the number of items that were taken into account.
        ///
        /// Literature:
        ///   C. Manning, P. Raghavan, H. Schütze: Introduction to Information Retrieval, Cambridge University Press, 2008
        /// </remarks>
        /// <param name="recommender">item recommender</param>
        /// <param name="test">test cases</param>
        /// <param name="train">training data</param>
        /// <param name="relevant_users">a collection of integers with all relevant users</param>
        /// <param name="relevant_items">a collection of integers with all relevant items</param>
        /// <returns>a dictionary containing the evaluation results</returns>
        public static Dictionary<string, double> Evaluate(
			IItemRecommender recommender,
			IPosOnlyFeedback test,
			IPosOnlyFeedback train,
		    ICollection<int> relevant_users,
			ICollection<int> relevant_items)
        {
            if (train.Overlap(test) > 0)
                Console.Error.WriteLine("WARNING: Overlapping train and test data");

            // compute evaluation measures
            double auc_sum     = 0;
            double map_sum     = 0;
            double prec_5_sum  = 0;
            double prec_10_sum = 0;
            double prec_15_sum = 0;
            double ndcg_sum    = 0;
            int num_users      = 0;

            foreach (int user_id in relevant_users)
            {
                var correct_items = new HashSet<int>(test.UserMatrix[user_id]);
                correct_items.IntersectWith(relevant_items);

                // the number of items that are really relevant for this user
                var relevant_items_in_train = new HashSet<int>(train.UserMatrix[user_id]);
                relevant_items_in_train.IntersectWith(relevant_items);
                int num_eval_items = relevant_items.Count - relevant_items_in_train.Count();

                // skip all users that have 0 or #relevant_items test items
                if (correct_items.Count == 0)
                    continue;
                if (num_eval_items - correct_items.Count == 0)
                    continue;

                num_users++;
                int[] prediction = Prediction.PredictItems(recommender, user_id, relevant_items);

                auc_sum     += AUC(prediction, correct_items, train.UserMatrix[user_id]);
                map_sum     += MAP(prediction, correct_items, train.UserMatrix[user_id]);
                ndcg_sum    += NDCG(prediction, correct_items, train.UserMatrix[user_id]);
                prec_5_sum  += PrecisionAt(prediction, correct_items, train.UserMatrix[user_id],  5);
                prec_10_sum += PrecisionAt(prediction, correct_items, train.UserMatrix[user_id], 10);
                prec_15_sum += PrecisionAt(prediction, correct_items, train.UserMatrix[user_id], 15);

                if (prediction.Length != relevant_items.Count)
                    throw new Exception("Not all items have been ranked.");

                if (num_users % 1000 == 0)
                    Console.Error.Write(".");
                if (num_users % 20000 == 0)
                    Console.Error.WriteLine();
            }

            var result = new Dictionary<string, double>();
            result["AUC"]       = auc_sum / num_users;
            result["MAP"]       = map_sum / num_users;
            result["NDCG"]      = ndcg_sum / num_users;
            result["prec@5"]    = prec_5_sum / num_users;
            result["prec@10"]   = prec_10_sum / num_users;
            result["prec@15"]   = prec_15_sum / num_users;
            result["num_users"] = num_users;
            result["num_lists"] = num_users;
            result["num_items"] = relevant_items.Count;

            return result;
        }
Example #4
0
        /// <summary>Evaluation for rankings of filtered items</summary>
        /// <remarks>
        /// </remarks>
        /// <param name="recommender">item recommender</param>
        /// <param name="test">test cases</param>
        /// <param name="train">training data</param>
        /// <param name="item_attributes">the item attributes to be used for filtering</param>
        /// <param name="relevant_users">a collection of integers with all relevant users</param>
        /// <param name="relevant_items">a collection of integers with all relevant items</param>
        /// <returns>a dictionary containing the evaluation results</returns>
        public static Dictionary<string, double> Evaluate(
			IItemRecommender recommender,
			IPosOnlyFeedback test,
			IPosOnlyFeedback train,
		    SparseBooleanMatrix item_attributes,
		    ICollection<int> relevant_users,
			ICollection<int> relevant_items)
        {
            if (train.Overlap(test) > 0)
                Console.Error.WriteLine("WARNING: Overlapping train and test data");

            SparseBooleanMatrix items_by_attribute = (SparseBooleanMatrix) item_attributes.Transpose();

            // compute evaluation measures
            double auc_sum     = 0;
            double map_sum     = 0;
            double prec_5_sum  = 0;
            double prec_10_sum = 0;
            double prec_15_sum = 0;
            double ndcg_sum    = 0;

            // for counting the users and the evaluation lists
            int num_lists = 0;
            int num_users = 0;
            int last_user_id = -1;

            foreach (int user_id in relevant_users)
            {
                var filtered_items = GetFilteredItems(user_id, test, item_attributes);

                foreach (int attribute_id in filtered_items.Keys)
                {
                    // TODO optimize this a bit, currently it is quite naive
                    var relevant_filtered_items = new HashSet<int>(items_by_attribute[attribute_id]);
                    relevant_filtered_items.IntersectWith(relevant_items);

                    var correct_items = new HashSet<int>(filtered_items[attribute_id]);
                    correct_items.IntersectWith(relevant_filtered_items);

                    // the number of items that are really relevant for this user
                    var relevant_items_in_train = new HashSet<int>(train.UserMatrix[user_id]);
                    relevant_items_in_train.IntersectWith(relevant_filtered_items);
                    int num_eval_items = relevant_filtered_items.Count - relevant_items_in_train.Count();

                    // skip all users that have 0 or #relevant_filtered_items test items
                    if (correct_items.Count == 0)
                        continue;
                    if (num_eval_items - correct_items.Count == 0)
                        continue;

                    // counting stats
                    num_lists++;
                    if (last_user_id != user_id)
                    {
                        last_user_id = user_id;
                        num_users++;
                    }

                    // evaluation
                    int[] prediction = Prediction.PredictItems(recommender, user_id, relevant_filtered_items);

                    auc_sum     += Items.AUC(prediction, correct_items, train.UserMatrix[user_id]);
                    map_sum     += Items.MAP(prediction, correct_items, train.UserMatrix[user_id]);
                    ndcg_sum    += Items.NDCG(prediction, correct_items, train.UserMatrix[user_id]);
                    prec_5_sum  += Items.PrecisionAt(prediction, correct_items, train.UserMatrix[user_id],  5);
                    prec_10_sum += Items.PrecisionAt(prediction, correct_items, train.UserMatrix[user_id], 10);
                    prec_15_sum += Items.PrecisionAt(prediction, correct_items, train.UserMatrix[user_id], 15);

                    if (prediction.Length != relevant_filtered_items.Count)
                        throw new Exception("Not all items have been ranked.");

                    if (num_lists % 1000 == 0)
                        Console.Error.Write(".");
                    if (num_lists % 20000 == 0)
                        Console.Error.WriteLine();
                }
            }

            var result = new Dictionary<string, double>();
            result.Add("AUC",     auc_sum / num_lists);
            result.Add("MAP",     map_sum / num_lists);
            result.Add("NDCG",    ndcg_sum / num_lists);
            result.Add("prec@5",  prec_5_sum / num_lists);
            result.Add("prec@10", prec_10_sum / num_lists);
            result.Add("prec@15", prec_15_sum / num_lists);
            result.Add("num_users", num_users);
            result.Add("num_lists", num_lists);
            result.Add("num_items", relevant_items.Count);

            return result;
        }