Example #1
0
        protected IGeneratedAlgorithm InferAll(bool inferOnlySpecifiedVars, IEnumerable <IVariable> vars)
        {
            IGeneratedAlgorithm ca = GetCompiledInferenceAlgorithm(inferOnlySpecifiedVars, vars);

            Execute(ca);
            return(ca);
        }
 /// <summary>
 /// Infer the output messages, for the given model and batch number, for all
 /// shared variables in this set
 /// </summary>
 /// <param name="ca">Compiled algorithm</param>
 /// <param name="modelNumber">Model id</param>
 /// <param name="batchNumber">Batch number</param>
 public void InferOutput(IGeneratedAlgorithm ca, Model modelNumber, int batchNumber)
 {
     foreach (ISharedVariable v in this)
     {
         v.InferOutput(ca, modelNumber, batchNumber);
     }
 }
Example #3
0
        /// <summary>
        /// Handles the engine message updated.
        /// </summary>
        /// <param name="algorithm">The algorithm.</param>
        /// <param name="messageEvent">The <see cref="MessageUpdatedEventArgs"/> instance containing the event data.</param>
        private void EngineMessageUpdated(IGeneratedAlgorithm algorithm, MessageUpdatedEventArgs messageEvent)
        {
            if (!this.MessageHistories.ContainsKey(messageEvent.MessageId))
            {
                this.MessageHistories[messageEvent.MessageId] = new List <Bernoulli>();
            }

            // Console.WriteLine(messageEvent);
            if (messageEvent.Message is Bernoulli)
            {
                this.MessageHistories[messageEvent.MessageId].Add((Bernoulli)messageEvent.Message);
            }
        }
        /// <summary>
        /// Message updated.
        /// </summary>
        /// <param name="algorithm">The algorithm.</param>
        /// <param name="messageEvent">The <see cref="MessageUpdatedEventArgs"/> instance containing the event data.</param>
        private void MessageUpdated(IGeneratedAlgorithm algorithm, MessageUpdatedEventArgs messageEvent)
        {
            if (!this.MessageHistories.ContainsKey(messageEvent.MessageId))
            {
                this.MessageHistories[messageEvent.MessageId] = new List <Gaussian>();
            }

            if (messageEvent.Message is Gaussian item)
            {
                this.MessageHistories[messageEvent.MessageId].Add(item);
            }

            // Console.WriteLine(messageEvent);
        }
Example #5
0
        private void Execute(IGeneratedAlgorithm ca)
        {
            // If there is a message update listener, try to add in the engine to listen to messages.
            if (this.MessageUpdated != null)
            {
                DebuggingSupport.TryAddRemoveEventListenerDynamic(ca, OnMessageUpdated, add: true);
            }

            // Register the ProgressChanged handler only while doing inference within InferenceEngine.
            // We do not want the handler to run if the user accesses the GeneratedAlgorithms directly.
            ca.ProgressChanged += OnProgressChanged;
            try
            {
                Stopwatch s = null;
                if (ShowTimings)
                {
                    s = new Stopwatch();
                    s.Start();
                    FileStats.Clear();
                }
                if (ResetOnObservedValueChanged)
                {
                    ca.Execute(NumberOfIterations);
                }
                else
                {
                    ca.Update(NumberOfIterations - ca.NumberOfIterationsDone);
                }
                if (s != null)
                {
                    long elapsed = s.ElapsedMilliseconds;
                    Console.WriteLine("Inference time was {1}ms (max {0} iterations)",
                                      NumberOfIterations, elapsed);
                    if (FileStats.ReadCount > 0 || FileStats.WriteCount > 0)
                    {
                        Console.WriteLine("{0} file reads {1} file writes", FileStats.ReadCount, FileStats.WriteCount);
                    }
                }
            }
            finally
            {
                ca.ProgressChanged -= OnProgressChanged;
                if (this.MessageUpdated != null)
                {
                    DebuggingSupport.TryAddRemoveEventListenerDynamic(ca, OnMessageUpdated, add: false);
                }
            }
        }
Example #6
0
        /// <summary>
        /// Tries to dynamically add or remove an event handler to a generated algorithm instance.
        /// </summary>
        /// <param name="ca">The generated algorithm instance</param>
        /// <param name="d">The event handler to add or remove</param>
        /// <param name="add">If true will add, otherwise will remove</param>
        /// <returns>True if the event handler was added or removed successfully</returns>
        internal static bool TryAddRemoveEventListenerDynamic(IGeneratedAlgorithm ca, EventHandler <MessageUpdatedEventArgs> d, bool add)
        {
            var eventInfo = ca.GetType().GetEvent(MessageEventName);

            if (eventInfo == null)
            {
                return(false);
            }
            if (add)
            {
                eventInfo.AddEventHandler(ca, d);
            }
            else
            {
                eventInfo.RemoveEventHandler(ca, d);
            }
            return(true);
        }
Example #7
0
        /// <summary>
        /// Compiles the last built model into a CompiledAlgorithm which implements
        /// the specified inference algorithm on the model.
        /// </summary>
        /// <returns></returns>
        private IGeneratedAlgorithm Compile()
        {
            mb.SetModelName(ModelNamespace, ModelName);
            if (ShowMsl)
            {
                Console.WriteLine(mb.ModelString());
            }
            if (ShowFactorGraph || SaveFactorGraphToFolder != null)
            {
                if (SaveFactorGraphToFolder != null && Visualizer?.GraphWriter != null)
                {
                    Directory.CreateDirectory(SaveFactorGraphToFolder);
                    Visualizer.GraphWriter.WriteGraph(mb, SaveFactorGraphToFolder + @"\" + ModelName);
                }
                if (ShowFactorGraph && Visualizer?.FactorGraphVisualizer != null)
                {
                    Visualizer.FactorGraphVisualizer.VisualizeFactorGraph(mb);
                }
            }
            Stopwatch s = null;

            if (ShowTimings)
            {
                s = new Stopwatch();
                s.Start();
            }
            IGeneratedAlgorithm compiledAlgorithm = Compiler.CompileWithoutParams(mb.modelType, null, mb.Attributes);

            if (ShowTimings)
            {
                s.Stop();
                Console.WriteLine("Compilation time was " + s.ElapsedMilliseconds + "ms.");
            }
            CompiledAlgorithmInfo info = new CompiledAlgorithmInfo(compiledAlgorithm, mb.observedVars);

            compiledAlgorithms.Push(info);
            foreach (IVariable v in mb.variablesToInfer)
            {
                compiledAlgorithmForVariable[v] = info;
            }
            SetObservedValues(info);
            return(info.exec);
        }
Example #8
0
        /// <summary>
        /// Initializes a new instance of the <see cref="BinaryModel"/> class.
        /// </summary>
        /// <param name="trainModel">If set to <c>true</c> train model.</param>
        /// <param name="showFactorGraph">If set to <c>true</c> show factor graph.</param>
        /// <param name="debug">If set to <c>true</c> debug.</param>
        public BinaryModel(bool trainModel, bool showFactorGraph = false, bool debug = false)
        {
            evidence = Variable.Bernoulli(0.5).Named("evidence");

            using (Variable.If(evidence))
            {
                numberOfResidents = Variable.New<int>().Named("numberOfResidents").Attrib(new DoNotInfer());
                numberOfFeatures = Variable.New<int>().Named("numberOfFeatures").Attrib(new DoNotInfer());

                var resident = new Range(numberOfResidents).Named("resident");
                var feature = new Range(numberOfFeatures).Named("feature");

                numberOfExamples = Variable.Array<int>(resident).Named("numberOfExamples").Attrib(new DoNotInfer());
                var example = new Range(numberOfExamples[resident]).Named("example").Attrib(new Sequential());

                noisePrecision = Variable.New<double>().Named("noisePrecision").Attrib(new DoNotInfer());

                weightPriorMeans = Variable.New<GaussianArray>().Named("weightPriorMeans").Attrib(new DoNotInfer());
                weightPriorPrecisions = Variable.New<GammaArray>().Named("weightPriorPrecisions").Attrib(new DoNotInfer());

                weightMeans = Variable.Array<double>(feature).Named("weightMeans");
                weightPrecisions = Variable.Array<double>(feature).Named("weightPrecisions");

                weightMeans.SetTo(Variable<double[]>.Random(weightPriorMeans));
                weightPrecisions.SetTo(Variable<double[]>.Random(weightPriorPrecisions));

                weights = Variable.Array(Variable.Array<double>(feature), resident).Named("weights");
                featureValues = Variable.Array(Variable.Array(Variable.Array<double>(feature), example), resident).Named("featureValues").Attrib(new DoNotInfer());

                //			if (!useBias)
                //			{
                //				thresholdPriors = Variable.New<GaussianArray>().Named("thresholdPrior").Attrib(new DoNotInfer());
                //				thresholds = Variable.Array<double>(resident).Named("threshold");
                //				thresholds.SetTo(Variable<double[]>.Random(thresholdPriors));
                //			}

                activities = Variable.Array(Variable.Array<bool>(example), resident).Named("activities");
                // activities[resident][example].AddAttribute(new MarginalPrototype(new Bernoulli()));

                using (Variable.ForEach(resident))
                {
                    var products = Variable.Array(Variable.Array<double>(feature), example).Named("products");
                    var scores = Variable.Array<double>(example).Named("scores");
                    var scoresPlusNoise = Variable.Array<double>(example).Named("scoresPlusNoise");

                    weights[resident][feature] = Variable.GaussianFromMeanAndPrecision(weightMeans[feature], weightPrecisions[feature]);

                    using (Variable.ForEach(example))
                    {
                        using (Variable.ForEach(feature))
                        {
                            products[example][feature] = weights[resident][feature] * featureValues[resident][example][feature];
                        }

                        scores[example] = Variable.Sum(products[example]).Named("score");
                        scoresPlusNoise[example] = Variable.GaussianFromMeanAndPrecision(scores[example], noisePrecision).Named("scorePlusNoise");

                        //					if (useBias)
                        {
                            activities[resident][example] = scoresPlusNoise[example] > 0;
                        }
                        //					else
                        //					{
                        //						var diff = (scoresPlusNoise[example] - thresholds[resident]).Named("diff");
                        //						activities[example][resident] = diff > 0;
                        //					}
                    }
                }
            }

            engine = new InferenceEngine
            {
                Algorithm = new ExpectationPropagation { DefaultNumberOfIterations = trainModel ? 10 : 1 },
                ShowFactorGraph = showFactorGraph,
                ShowProgress = false,
                // BrowserMode = BrowserMode.Never, // debug ? BrowserMode.OnError : BrowserMode.Never,
                ShowWarnings = debug
            };

            if (debug)
            {
                engine.Compiler.GenerateInMemory = false;
                engine.Compiler.WriteSourceFiles = true;
                engine.Compiler.IncludeDebugInformation = true;
                engine.Compiler.CatchExceptions = true;
            }

            #if USE_PRECOMPILED_ALGORITHM
            numberOfResidents.ObservedValue = default(int);
            numberOfExamples.ObservedValue = default(int);
            numberOfFeatures.ObservedValue = default(int);
            noisePrecision.ObservedValue = default(double);
            featureValues.ObservedValue = default(double[][][]);
            weightPriorMeans.ObservedValue = default(DistributionStructArray<Gaussian, double>); // (DistributionStructArray<Gaussian, double>)Distribution<double>.Array(default(Gaussian[]));
            weightPriorPrecisions.ObservedValue = default(DistributionStructArray<Gamma, double>); // (DistributionStructArray<Gamma, double>)Distribution<double>.Array(default(Gamma[]));
            activities.ObservedValue = default(bool[][]);

            if (trainModel)
            {
                activities.AddAttribute(new DoNotInfer());
                algorithm = engine.GetCompiledInferenceAlgorithm(new IVariable[] { weights, weightMeans, weightPrecisions });
            }
            else
            {
                activities.AddAttribute(QueryTypes.Marginal);
                algorithm = engine.GetCompiledInferenceAlgorithm(new IVariable[] { activities });
            }
            #endif
        }
Example #9
0
        /// <summary>
        /// Infers the marginal distribution for the specified variable.
        /// </summary>
        /// <typeparam name="TReturn">Desired return type which may be a distribution type or an array type if the argument is a VariableArray</typeparam>
        /// <param name="var">The variable whose marginal is to be inferred</param>
        /// <returns>The marginal distribution (or an approximation to it)</returns>
        public TReturn Infer <TReturn>(IVariable var)
        {
            IGeneratedAlgorithm ca = InferAll(false, var);

            return(ca.Marginal <TReturn>(var.Name));
        }
Example #10
0
        /// <summary>
        /// Infers the marginal distribution for the specified variable.
        /// </summary>
        /// <param name="var">The variable whose marginal is to be inferred</param>
        /// <returns>The marginal distribution (or an approximation to it)</returns>
        public object Infer(IVariable var)
        {
            IGeneratedAlgorithm ca = InferAll(false, var);

            return(ca.Marginal(var.Name));
        }
Example #11
0
 public CompiledAlgorithmInfo(IGeneratedAlgorithm exec, IEnumerable <Variable> observedVars)
 {
     this.exec = exec;
     this.observedVarsInOrder.AddRange(observedVars);
     this.observedVars.AddRange(observedVars);
 }
 /// <summary>
 /// Update all the SharedVariables registered with this model.
 /// </summary>
 /// <param name="engine"></param>
 /// <param name="batchNumber">A number from 0 to BatchCount-1</param>
 public void InferShared(IGeneratedAlgorithm engine, int batchNumber)
 {
     SharedVariables.SetInput(this, batchNumber);
     SharedVariables.InferOutput(engine, this, batchNumber);
 }
 /// <summary>
 /// Infer the shared variable's output message for the given model and batch number.
 /// </summary>
 /// <param name="ca">The compiled algorithm.</param>
 /// <param name="modelNumber">The model id.</param>
 /// <param name="batchNumber">The batch number.</param>
 public abstract void InferOutput(IGeneratedAlgorithm ca, Model modelNumber, int batchNumber);
Example #14
0
        /// <summary>
        /// Initializes a new instance of the <see cref="BinaryModel"/> class.
        /// </summary>
        /// <param name="trainModel">If set to <c>true</c> train model.</param>
        /// <param name="showFactorGraph">If set to <c>true</c> show factor graph.</param>
        /// <param name="debug">If set to <c>true</c> debug.</param>
        public BinaryModel(bool trainModel, bool showFactorGraph = false, bool debug = false)
        {
            evidence = Variable.Bernoulli(0.5).Named("evidence");

            using (Variable.If(evidence))
            {
                numberOfResidents = Variable.New <int>().Named("numberOfResidents").Attrib(new DoNotInfer());
                numberOfFeatures  = Variable.New <int>().Named("numberOfFeatures").Attrib(new DoNotInfer());

                var resident = new Range(numberOfResidents).Named("resident");
                var feature  = new Range(numberOfFeatures).Named("feature");

                numberOfExamples = Variable.Array <int>(resident).Named("numberOfExamples").Attrib(new DoNotInfer());
                var example = new Range(numberOfExamples[resident]).Named("example").Attrib(new Sequential());

                noisePrecision = Variable.New <double>().Named("noisePrecision").Attrib(new DoNotInfer());

                weightPriorMeans      = Variable.New <GaussianArray>().Named("weightPriorMeans").Attrib(new DoNotInfer());
                weightPriorPrecisions = Variable.New <GammaArray>().Named("weightPriorPrecisions").Attrib(new DoNotInfer());

                weightMeans      = Variable.Array <double>(feature).Named("weightMeans");
                weightPrecisions = Variable.Array <double>(feature).Named("weightPrecisions");

                weightMeans.SetTo(Variable <double[]> .Random(weightPriorMeans));
                weightPrecisions.SetTo(Variable <double[]> .Random(weightPriorPrecisions));

                weights       = Variable.Array(Variable.Array <double>(feature), resident).Named("weights");
                featureValues = Variable.Array(Variable.Array(Variable.Array <double>(feature), example), resident).Named("featureValues").Attrib(new DoNotInfer());

                //			if (!useBias)
                //			{
                //				thresholdPriors = Variable.New<GaussianArray>().Named("thresholdPrior").Attrib(new DoNotInfer());
                //				thresholds = Variable.Array<double>(resident).Named("threshold");
                //				thresholds.SetTo(Variable<double[]>.Random(thresholdPriors));
                //			}

                activities = Variable.Array(Variable.Array <bool>(example), resident).Named("activities");
                // activities[resident][example].AddAttribute(new MarginalPrototype(new Bernoulli()));

                using (Variable.ForEach(resident))
                {
                    var products        = Variable.Array(Variable.Array <double>(feature), example).Named("products");
                    var scores          = Variable.Array <double>(example).Named("scores");
                    var scoresPlusNoise = Variable.Array <double>(example).Named("scoresPlusNoise");

                    weights[resident][feature] = Variable.GaussianFromMeanAndPrecision(weightMeans[feature], weightPrecisions[feature]);

                    using (Variable.ForEach(example))
                    {
                        using (Variable.ForEach(feature))
                        {
                            products[example][feature] = weights[resident][feature] * featureValues[resident][example][feature];
                        }

                        scores[example]          = Variable.Sum(products[example]).Named("score");
                        scoresPlusNoise[example] = Variable.GaussianFromMeanAndPrecision(scores[example], noisePrecision).Named("scorePlusNoise");

                        //					if (useBias)
                        {
                            activities[resident][example] = scoresPlusNoise[example] > 0;
                        }
                        //					else
                        //					{
                        //						var diff = (scoresPlusNoise[example] - thresholds[resident]).Named("diff");
                        //						activities[example][resident] = diff > 0;
                        //					}
                    }
                }
            }

            engine = new InferenceEngine
            {
                Algorithm = new ExpectationPropagation {
                    DefaultNumberOfIterations = trainModel ? 10 : 1
                },
                ShowFactorGraph = showFactorGraph,
                ShowProgress    = false,
                // BrowserMode = BrowserMode.Never, // debug ? BrowserMode.OnError : BrowserMode.Never,
                ShowWarnings = debug
            };

            if (debug)
            {
                engine.Compiler.GenerateInMemory        = false;
                engine.Compiler.WriteSourceFiles        = true;
                engine.Compiler.IncludeDebugInformation = true;
                engine.Compiler.CatchExceptions         = true;
            }

#if USE_PRECOMPILED_ALGORITHM
            numberOfResidents.ObservedValue     = default(int);
            numberOfExamples.ObservedValue      = default(int);
            numberOfFeatures.ObservedValue      = default(int);
            noisePrecision.ObservedValue        = default(double);
            featureValues.ObservedValue         = default(double[][][]);
            weightPriorMeans.ObservedValue      = default(DistributionStructArray <Gaussian, double>);       // (DistributionStructArray<Gaussian, double>)Distribution<double>.Array(default(Gaussian[]));
            weightPriorPrecisions.ObservedValue = default(DistributionStructArray <Gamma, double>);          // (DistributionStructArray<Gamma, double>)Distribution<double>.Array(default(Gamma[]));
            activities.ObservedValue            = default(bool[][]);

            if (trainModel)
            {
                activities.AddAttribute(new DoNotInfer());
                algorithm = engine.GetCompiledInferenceAlgorithm(new IVariable[] { weights, weightMeans, weightPrecisions });
            }
            else
            {
                activities.AddAttribute(QueryTypes.Marginal);
                algorithm = engine.GetCompiledInferenceAlgorithm(new IVariable[] { activities });
            }
#endif
        }