Example #1
0
        private static IBMControl ControlCutNextToCut(bool agglomeration)
        {
            IBMControl c = new IBMControl();

            c.savetodb = false;

            int    dgDegree    = 2;
            double vortexSpeed = 1.0;

            // IBM Settings
            c.CutCellQuadratureType   = XQuadFactoryHelper.MomentFittingVariants.Classic;
            c.LevelSetQuadratureOrder = 5;
            c.AgglomerationThreshold  = agglomeration ? 0.3 : 0.0;

            c.DomainType         = DomainTypes.StaticImmersedBoundary;
            c.ActiveOperators    = Operators.Convection;
            c.ConvectiveFluxType = ConvectiveFluxTypes.Rusanov;
            c.ExplicitScheme     = ExplicitSchemes.RungeKutta;
            c.ExplicitOrder      = 1;
            c.EquationOfState    = IdealGas.Air;

            c.MachNumber = 1 / Math.Sqrt(c.EquationOfState.HeatCapacityRatio);

            c.AddVariable(Variables.Density, dgDegree);
            c.AddVariable(Variables.Momentum.xComponent, dgDegree);
            c.AddVariable(Variables.Momentum.yComponent, dgDegree);
            c.AddVariable(Variables.Energy, dgDegree);
            c.AddVariable(IBMVariables.LevelSet, 2);

            c.GridFunc = delegate {
                GridCommons grid = Grid2D.Cartesian2DGrid(
                    GenericBlas.Linspace(-5.0, 5.0, 21),
                    GenericBlas.Linspace(-0.5, 0.5, 3));
                grid.EdgeTagNames.Add(1, "supersonicInlet");
                grid.DefineEdgeTags(X => 1);
                return(grid);
            };

            c.LevelSetBoundaryTag = "supersonicInlet";

            IsentropicVortexExactSolution solution = new IsentropicVortexExactSolution(c, vortexSpeed);

            c.InitialValues_Evaluators.Add(Variables.Density, X => solution.rho()(X, 0.0));
            c.InitialValues_Evaluators.Add(Variables.Velocity.xComponent, X => solution.u()(X, 0.0));
            c.InitialValues_Evaluators.Add(Variables.Velocity.yComponent, X => solution.v()(X, 0.0));
            c.InitialValues_Evaluators.Add(Variables.Pressure, X => solution.p()(X, 0.0));
            if (agglomeration)
            {
                c.LevelSetFunction = (X, t) => - ((X[1] - 0.17) * (X[1] - 0.17) - 0.1);
            }
            else
            {
                c.LevelSetFunction = (X, t) => - (X[1] * X[1] - 0.2);
            }


            c.AddBoundaryValue("supersonicInlet", Variables.Density, solution.rho());
            c.AddBoundaryValue("supersonicInlet", Variables.Velocity[0], solution.u());
            c.AddBoundaryValue("supersonicInlet", Variables.Velocity[1], solution.v());
            c.AddBoundaryValue("supersonicInlet", Variables.Pressure, solution.p());

            c.Queries.Add("L2ErrorDensity", IBMQueries.L2Error(Variables.Density, solution.rho()));
            c.Queries.Add("L2ErrorPressure", IBMQueries.L2Error(state => state.Pressure, solution.p()));
            c.Queries.Add("L2ErrorEntropy", IBMQueries.L2Error(state => state.Entropy, (X, t) => 1.0));

            c.dtMin         = 0.0;
            c.dtMax         = 1.0;
            c.CFLFraction   = 0.2;
            c.Endtime       = double.MaxValue;
            c.NoOfTimesteps = 100;

            return(c);
        }
Example #2
0
        public static IBMControl PistonControl(int dgDegree, int rkDegree, ConvectiveFluxTypes convectiveFlux, TimesteppingStrategies timeSteppingStrategy, double agglomerationThreshold)
        {
            double pistonVelocity          = 1.0;
            double initialLevelSetPosition = 0.1;
            //double initialLevelSetPosition = 0.5;

            IBMControl c = new IBMControl();

            c.DbPath   = null;
            c.savetodb = false;

            c.ProjectName        = "Piston";
            c.ProjectDescription = "Vertical moving at flow velocity through constant flow field";

            c.DomainType         = DomainTypes.MovingImmersedBoundary;
            c.ActiveOperators    = Operators.Convection;
            c.ConvectiveFluxType = convectiveFlux;
            c.EquationOfState    = IdealGas.Air;
            c.MachNumber         = 1.0 / Math.Sqrt(c.EquationOfState.HeatCapacityRatio);

            c.TimesteppingStrategy = timeSteppingStrategy;
            c.ExplicitScheme       = ExplicitSchemes.RungeKutta;
            c.ExplicitOrder        = rkDegree;

            c.AddVariable(Variables.Density, dgDegree);
            c.AddVariable(Variables.Momentum.xComponent, dgDegree);
            c.AddVariable(Variables.Momentum.yComponent, dgDegree);
            c.AddVariable(Variables.Energy, dgDegree);
            c.AddVariable(IBMVariables.LevelSet, 1);

            c.GridFunc = delegate {
                double[] xNodes = GenericBlas.Linspace(0.0, 2.0, 4);
                double[] yNodes = GenericBlas.Linspace(-1.0, 1.0, 4);
                var      grid   = Grid2D.Cartesian2DGrid(xNodes, yNodes, periodicX: false, periodicY: true);
                grid.EdgeTagNames.Add(1, "adiabaticSlipWall");
                grid.EdgeTagNames.Add(2, "supersonicInlet");
                grid.DefineEdgeTags(X => 2);
                return(grid);
            };

            c.CutCellQuadratureType   = XQuadFactoryHelper.MomentFittingVariants.Classic;
            c.LevelSetQuadratureOrder = 10;
            c.LevelSetBoundaryTag     = "adiabaticSlipWall";
            c.AgglomerationThreshold  = agglomerationThreshold;

            c.InitialValues_Evaluators.Add(Variables.Density, X => 1.0);
            c.InitialValues_Evaluators.Add(Variables.Velocity.xComponent, X => pistonVelocity);
            c.InitialValues_Evaluators.Add(Variables.Velocity.yComponent, X => 0.0);
            c.InitialValues_Evaluators.Add(Variables.Pressure, X => 1.0);

            c.LevelSetFunction = delegate(double[] X, double time) {
                double newLevelSetPosition = initialLevelSetPosition + pistonVelocity * time;
                return(X[0] - newLevelSetPosition);
            };
            c.LevelSetVelocity = (X, t) => new Vector(pistonVelocity, 0.0);

            c.AddBoundaryValue("adiabaticSlipWall", Variables.Velocity.xComponent, X => pistonVelocity);
            c.AddBoundaryValue("adiabaticSlipWall", Variables.Velocity.yComponent, X => 0.0);
            c.AddBoundaryValue("supersonicInlet", Variables.Density, X => 1.0);
            c.AddBoundaryValue("supersonicInlet", Variables.Velocity[0], X => pistonVelocity);
            c.AddBoundaryValue("supersonicInlet", Variables.Velocity[1], X => 0.0);
            c.AddBoundaryValue("supersonicInlet", Variables.Pressure, X => 1.0);

            c.Queries.Add("L2ErrorDensity", IBMQueries.L2Error(Variables.Density, (X, t) => 1.0));
            c.Queries.Add("L2ErrorXMomentum", IBMQueries.L2Error(Variables.Momentum.xComponent, (X, t) => 1.0));
            c.Queries.Add("L2ErrorYMomentum", IBMQueries.L2Error(Variables.Momentum.yComponent, (X, t) => 0.0));
            c.Queries.Add("L2ErrorPressure", IBMQueries.L2Error(state => state.Pressure, (X, t) => 1.0));

            c.dtMin         = 0.0;
            c.dtMax         = 1.0;
            c.CFLFraction   = 0.1;
            c.Endtime       = 0.75;
            c.NoOfTimesteps = int.MaxValue;

            return(c);
        }
Example #3
0
        private static IBMControl ControlTemplate(int dgDegree, int divisions, double levelSetPosition)
        {
            IBMControl c = new IBMControl();

            c.savetodb = false;

            double vortexSpeed = 1.0;

            c.DomainType         = DomainTypes.StaticImmersedBoundary;
            c.ActiveOperators    = Operators.Convection;
            c.ConvectiveFluxType = ConvectiveFluxTypes.Rusanov;
            c.ExplicitScheme     = ExplicitSchemes.RungeKutta;
            c.ExplicitOrder      = 1;
            c.EquationOfState    = IdealGas.Air;

            c.MachNumber = 1.0 / Math.Sqrt(c.EquationOfState.HeatCapacityRatio);

            c.AddVariable(Variables.Density, dgDegree);
            c.AddVariable(Variables.Momentum.xComponent, dgDegree);
            c.AddVariable(Variables.Momentum.yComponent, dgDegree);
            c.AddVariable(Variables.Energy, dgDegree);
            c.AddVariable(IBMVariables.LevelSet, 1);

            c.GridFunc = delegate {
                int         noOfCellsPerDirection = (2 << divisions) * 10;
                GridCommons grid = Grid2D.Cartesian2DGrid(
                    GenericBlas.Linspace(-10.0, 10.0, noOfCellsPerDirection + 1),
                    GenericBlas.Linspace(-10.0, 10.0, noOfCellsPerDirection + 1));
                grid.EdgeTagNames.Add(1, "supersonicInlet");
                grid.DefineEdgeTags(X => 1);
                return(grid);
            };

            c.LevelSetBoundaryTag = "supersonicInlet";

            IsentropicVortexExactSolution solution = new IsentropicVortexExactSolution(c, vortexSpeed);

            c.InitialValues_Evaluators.Add(Variables.Density, X => solution.rho()(X, 0.0));
            c.InitialValues_Evaluators.Add(Variables.Velocity.xComponent, X => solution.u()(X, 0.0));
            c.InitialValues_Evaluators.Add(Variables.Velocity.yComponent, X => solution.v()(X, 0.0));
            c.InitialValues_Evaluators.Add(Variables.Pressure, X => solution.p()(X, 0.0));

            c.LevelSetFunction = (X, t) => X[1] - levelSetPosition;

            c.AddBoundaryValue("supersonicInlet", Variables.Density, solution.rho());
            c.AddBoundaryValue("supersonicInlet", Variables.Velocity[0], solution.u());
            c.AddBoundaryValue("supersonicInlet", Variables.Velocity[1], solution.v());
            c.AddBoundaryValue("supersonicInlet", Variables.Pressure, solution.p());

            c.Queries.Add("L2ErrorDensity", IBMQueries.L2Error(Variables.Density, solution.rho()));
            c.Queries.Add("L2ErrorPressure", IBMQueries.L2Error(state => state.Pressure, solution.p()));
            c.Queries.Add("L2ErrorEntropy", IBMQueries.L2Error(state => state.Entropy, (X, t) => 1.0));

            c.dtMin         = 0.0;
            c.dtMax         = 1.0;
            c.CFLFraction   = 0.2;
            c.Endtime       = 0.5;
            c.NoOfTimesteps = 100;

            return(c);
        }
Example #4
0
        public static IBMControl IBMNACA0012(int MeshPara, int dgDegree, double CFL, double agglomeration, double alpha)
        {
            IBMControl c = new IBMControl();

            c.savetodb = true;

            // Solver Settings
            c.dtMin         = 0.0;
            c.dtMax         = 1.0;
            c.Endtime       = 1000.0;
            c.CFLFraction   = CFL;
            c.NoOfTimesteps = 200000;

            c.PrintInterval      = 10;
            c.ResidualInterval   = 100;
            c.ResidualLoggerType = ResidualLoggerTypes.ChangeRate | ResidualLoggerTypes.Query;
            c.ResidualBasedTerminationCriteria.Add("changeRate_L2_abs_rhoE", 1E-8);

            //IBM Settings
            c.LevelSetBoundaryTag     = "adiabaticSlipWall";
            c.LevelSetQuadratureOrder = 2 * dgDegree + 2;
            c.AgglomerationThreshold  = agglomeration;

            // NEXT STEP: SET THIS BOOL TO FALSE AND JUST USE IN POSITIVE SUB_VOLUME;
            // THEN TRY BOUNDING BOX APPROACH?
            // WHY THE HELL DOES THIS CONFIGURATION FAIL!??!?!?!?
            c.CutCellQuadratureType             = XQuadFactoryHelper.MomentFittingVariants.Classic;
            c.SurfaceHMF_ProjectNodesToLevelSet = false;
            c.SurfaceHMF_RestrictNodes          = true;
            c.SurfaceHMF_UseGaussNodes          = false;
            c.VolumeHMF_NodeCountSafetyFactor   = 3.0;
            c.VolumeHMF_RestrictNodes           = true;
            c.VolumeHMF_UseGaussNodes           = false;

            //Guid restart = new Guid("cd061fe3-3215-483a-8790-f6fd686d6676");
            //c.RestartInfo = new Tuple<Guid, BoSSS.Foundation.IO.TimestepNumber>(restart, -1);

            // Session Settings
            c.DbPath = @"\\fdyprime\userspace\kraemer-eis\FDY-Cluster\dbe_NACA\";
            //c.DbPath = @"C:\bosss_dbv2\NACA0012";
            c.savetodb           = true;
            c.saveperiod         = 10000;
            c.ProjectName        = "MeshPara:" + MeshPara + "_CFL=" + c.CFLFraction + "_p=" + dgDegree + "_agg=" + c.AgglomerationThreshold + "_alpha=" + alpha + "_HMF=" + c.CutCellQuadratureType;
            c.ProjectDescription = "NACA0012 Steady Test with Ma=0.5";
            c.Tags.Add("NACA0012");
            c.Tags.Add("IBM Test");
            c.Tags.Add("steady");

            // Solver Type
            c.DomainType         = DomainTypes.StaticImmersedBoundary;
            c.ActiveOperators    = Operators.Convection;
            c.ConvectiveFluxType = ConvectiveFluxTypes.OptimizedHLLC;

            // Time-Stepping Settings
            c.ExplicitScheme = ExplicitSchemes.RungeKutta;
            c.ExplicitOrder  = 1;

            //Material Settings
            c.EquationOfState = IdealGas.Air;



            // Primary Variables
            c.AddVariable(Variables.Density, dgDegree);
            c.AddVariable(Variables.Momentum.xComponent, dgDegree);
            c.AddVariable(Variables.Momentum.yComponent, dgDegree);
            c.AddVariable(Variables.Energy, dgDegree);

            c.AddVariable(IBMVariables.LevelSet, 8);

            // Refined Region
            double xBegin = -0.012;
            double xEnd   = 1.01;

            c.GridFunc = delegate
            {
                int chords = 100;

                int xleft   = -chords;
                int xRight  = chords;
                int yBottom = -chords;
                int yTop    = chords;

                double spacingFactor = 3.95;

                double[] xnodes1 = Grid1D.TanhSpacing(xleft, xBegin, MeshPara + 1, spacingFactor, false);
                double[] xnodes2 = Grid1D.TanhSpacing_DoubleSided(xBegin, xEnd, MeshPara + 1, 2.0);
                double[] xnodes3 = Grid1D.TanhSpacing(xEnd, xRight, MeshPara + 1, spacingFactor, true);

                double[] xComplete = new double[xnodes1.Length + xnodes2.Length + xnodes3.Length - 2];
                for (int i = 0; i < xnodes1.Length; i++)
                {
                    xComplete[i] = xnodes1[i];
                }
                for (int i = 1; i < xnodes2.Length; i++)
                {
                    xComplete[i + xnodes1.Length - 1] = xnodes2[i];
                }
                for (int i = 1; i < xnodes3.Length; i++)
                {
                    xComplete[i + xnodes1.Length + xnodes2.Length - 2] = xnodes3[i];
                }

                double yrefinedTop    = 0.2;
                double yrefinedBottom = -0.2;

                double[] ynodes1 = Grid1D.TanhSpacing(yBottom, yrefinedBottom, MeshPara + 1, spacingFactor, false);
                double[] ynodes2 = GenericBlas.Linspace(yrefinedBottom, yrefinedTop, (int)(0.75 * MeshPara) + 1);
                double[] ynodes3 = Grid1D.TanhSpacing(yrefinedTop, yTop, MeshPara + 1, spacingFactor, true);

                double[] yComplete = new double[ynodes1.Length + ynodes2.Length + ynodes3.Length - 2];
                for (int i = 0; i < ynodes1.Length; i++)
                {
                    yComplete[i] = ynodes1[i];
                }
                for (int i = 1; i < ynodes2.Length; i++)
                {
                    yComplete[i + ynodes1.Length - 1] = ynodes2[i];
                }
                for (int i = 1; i < ynodes3.Length; i++)
                {
                    yComplete[i + ynodes1.Length + ynodes2.Length - 2] = ynodes3[i];
                }


                int numOfCellsX = (xRight - xleft) * MeshPara;
                int numOfCellsY = (yTop - yBottom) * MeshPara;

                GridCommons grid = Grid2D.Cartesian2DGrid(
                    xComplete,
                    yComplete
                    );

                grid.EdgeTagNames.Add(1, "supersonicinlet");
                grid.DefineEdgeTags(x => 1);
                grid.Name = "[" + xleft + "," + xRight + "]x[" + yBottom + "," + yTop + "]_Cells:(" + (xComplete.Length - 1) + "x" + (yComplete.Length - 1) + ")";

                return(grid);
            };



            // Functions
            Func <double[], double, double> rho      = (X, t) => 1.0;
            Func <double[], double, double> u0       = (X, t) => 1.0;
            Func <double[], double, double> u1       = (X, t) => 0.0;
            Func <double[], double, double> pressure = (X, t) => 2.8571428571428;

            Func <double[], double> test = X => 1 - 0.05 * 0.4 / 1.4 * Math.Pow(Math.Exp(1 - X[0] * X[0] - X[1] * X[1]), (1 / 0.4));

            Func <double[], double, double> levelSet = delegate(double[] X, double t) {
                double value = 0.0;

                double radian = alpha * Math.PI / 180;

                double xRotated = 1 + Math.Cos(radian) * (X[0] - 1) - Math.Sin(radian) * (X[1]);
                double yRotated = Math.Sin(radian) * (X[0] - 1) + Math.Cos(radian) * (X[1]);

                double a = 0.6;
                //double b = 0.2969;
                double c1 = 0.126;
                double d  = 0.3516;
                double e  = 0.2843;
                double f  = 0.1036;


                if (yRotated >= 0.0 || (X[0] > 0.562875 && X[1] > 0))
                {
                    //if (yRotated >= 0.0 ){
                    value = Math.Pow((yRotated + a * (c1 * xRotated + d * Math.Pow(xRotated, 2) - e * Math.Pow(xRotated, 3) + f * Math.Pow(xRotated, 4))), 2) - 0.0317338596 * xRotated;
                }
                else
                {
                    value = Math.Pow((-yRotated + a * (c1 * xRotated + d * Math.Pow(xRotated, 2) - e * Math.Pow(xRotated, 3) + f * Math.Pow(xRotated, 4))), 2) - 0.0317338596 * xRotated;
                }

                //value = yRotated - Math.Tan(radian)*xRotated;

                return(value);
            };

            c.LevelSetFunction = levelSet;

            //Initial Values
            c.InitialValues_Evaluators.Add(Variables.Density, X => rho(X, 0.0));
            c.InitialValues_Evaluators.Add(Variables.Velocity.xComponent, X => u0(X, 0.0));
            c.InitialValues_Evaluators.Add(Variables.Velocity.yComponent, X => u1(X, 0.0));
            c.InitialValues_Evaluators.Add(Variables.Pressure, X => pressure(X, 0.0));

            //BoundaryConditions
            c.AddBoundaryValue("adiabaticSlipWall");
            c.AddBoundaryValue("supersonicInlet", Variables.Density, rho);
            c.AddBoundaryValue("supersonicInlet", Variables.Velocity.xComponent, u0);
            c.AddBoundaryValue("supersonicInlet", Variables.Velocity.yComponent, u1);
            c.AddBoundaryValue("supersonicInlet", Variables.Pressure, pressure);


            // Queries

            c.Queries.Add("L2ErrorEntropy", IBMQueries.L2Error(state => state.Entropy, (X, t) => 2.8571428571428));
            c.Queries.Add("IBMDragForce", IBMQueries.IBMDragForce());
            c.Queries.Add("IBMLiftForce", IBMQueries.IBMLiftForce());
            return(c);
        }
Example #5
0
        private static IBMControl CylinderControl(int dgDegree, double endTime)
        {
            string dbPath = @"..\..\Tests\IBMTests\IBMCylinderTests.zip";
            double Mach   = 0.2;
            double agglomerationThreshold = 0.3;
            int    gridSize = 64;

            var restartData = new Dictionary <int, Tuple <Guid, Guid, Guid> >()
            {
                { 0, Tuple.Create(new Guid("ae64096b-bab4-4f63-a2cd-99f5920a11e3"), new Guid("486113d4-e700-4bdb-9f92-38a15bac5388"), new Guid("6adec616-275a-444d-86ad-1b2bc8b8cd65")) },
                { 1, Tuple.Create(new Guid("083a99ee-af0b-4948-bd0f-1f972b551b99"), new Guid("4f4e6e60-953a-43c3-b062-c4750ab0ab71"), new Guid("d0615daf-6980-4ecf-af3f-e803877fc29b")) },
                { 2, Tuple.Create(new Guid("d102c10a-0ef2-417e-af1b-4ffad5ea4fe3"), new Guid("f67d08be-3ede-4d74-9a40-829071b44e6b"), new Guid("dfe950aa-9a6b-43d4-b046-e5dd61cc67f3")) },
                { 3, Tuple.Create(new Guid("f45e8802-4e78-45b5-9aac-c155c532b6a3"), new Guid("e670a74f-efb7-41d6-959c-28289e66904e"), new Guid("02e3f737-3f03-4b5a-9387-109dd0f4ec06")) }
            };

            IBMControl c = new IBMControl();

            c.DbPath   = dbPath;
            c.savetodb = false;

            int levelSetQuadratureOrder = 2 * dgDegree + 2; // kind-of-fix

            c.ProjectName        = String.Format("IBM cylinder: {0} cells, order {1}", gridSize, dgDegree);
            c.ProjectDescription = String.Format(
                "Flow around cylinder represented by a level set at Mach {0}" +
                " with cell agglomeration threshold {1} and {2}th order" +
                " HMF quadrature (classic variant)",
                Mach,
                agglomerationThreshold,
                levelSetQuadratureOrder);

            c.Tags.Add("Cylinder");
            c.Tags.Add("IBM");
            c.Tags.Add("Agglomeration");

            c.DomainType         = DomainTypes.StaticImmersedBoundary;
            c.ActiveOperators    = Operators.Convection;
            c.ConvectiveFluxType = ConvectiveFluxTypes.OptimizedHLLC;

            c.ExplicitScheme = ExplicitSchemes.RungeKutta;
            c.ExplicitOrder  = 1;

            c.EquationOfState = IdealGas.Air;
            c.MachNumber      = 1.0 / Math.Sqrt(c.EquationOfState.HeatCapacityRatio);

            c.AddVariable(Variables.Density, dgDegree);
            c.AddVariable(Variables.Momentum.xComponent, dgDegree);
            c.AddVariable(Variables.Momentum.yComponent, dgDegree);
            c.AddVariable(Variables.Energy, dgDegree);
            c.AddVariable(IBMVariables.LevelSet, 2);

            var sessionAndGridGuid = restartData[dgDegree];

            c.RestartInfo = new Tuple <Guid, TimestepNumber>(sessionAndGridGuid.Item1, -1);
            c.GridGuid    = sessionAndGridGuid.Item2;

            c.GridPartType    = GridPartType.METIS;
            c.GridPartOptions = "5";

            double gamma = c.EquationOfState.HeatCapacityRatio;

            c.AddBoundaryValue("supersonicInlet", Variables.Density, (X, t) => 1.0);
            c.AddBoundaryValue("supersonicInlet", Variables.Velocity[0], (X, t) => Mach * Math.Sqrt(gamma));
            c.AddBoundaryValue("supersonicInlet", Variables.Velocity[1], (X, t) => 0.0);
            c.AddBoundaryValue("supersonicInlet", Variables.Pressure, (X, t) => 1.0);

            c.AddBoundaryValue("adiabaticSlipWall");
            c.LevelSetBoundaryTag = "adiabaticSlipWall";

            c.Queries.Add("L2ErrorEntropy", IBMQueries.L2Error(state => state.Entropy, (X, t) => 1.0));
            c.Queries.Add("L2ErrorDensity", QueryLibrary.L2Error(Variables.Density, sessionAndGridGuid.Item3));
            c.Queries.Add("L2ErrorXMomentum", QueryLibrary.L2Error(Variables.Momentum[0], sessionAndGridGuid.Item3));
            c.Queries.Add("L2ErrorYMomentum", QueryLibrary.L2Error(Variables.Momentum[1], sessionAndGridGuid.Item3));
            c.Queries.Add("L2ErrorEnergy", QueryLibrary.L2Error(Variables.Energy, sessionAndGridGuid.Item3));

            c.CutCellQuadratureType             = XQuadFactoryHelper.MomentFittingVariants.OneStepGaussAndStokes;
            c.SurfaceHMF_ProjectNodesToLevelSet = false;
            c.SurfaceHMF_RestrictNodes          = true;
            c.SurfaceHMF_UseGaussNodes          = false;
            c.VolumeHMF_NodeCountSafetyFactor   = 5.0;
            c.VolumeHMF_RestrictNodes           = true;
            c.VolumeHMF_UseGaussNodes           = false;

            c.LevelSetQuadratureOrder = levelSetQuadratureOrder;
            c.AgglomerationThreshold  = agglomerationThreshold;

            c.dtMin         = 0.0;
            c.dtMax         = 1.0;
            c.CFLFraction   = 0.3;
            c.Endtime       = endTime;
            c.NoOfTimesteps = int.MaxValue;

            c.PrintInterval = 1;

            c.ResidualLoggerType = ResidualLoggerTypes.None;

            c.Paramstudy_CaseIdentification = new Tuple <string, object>[] {
                new Tuple <string, object>("dgDegree", dgDegree),
            };

            return(c);
        }
Example #6
0
        public static IBMControl IBMBump(int noOfCells, int dgDegree, int lsDegree, double CFL, double epsilonX = 0.0, double epsilonY = 0.0)
        {
            IBMControl c = new IBMControl();

            // Solver Settings
            c.dtMin         = 0.0;
            c.dtMax         = 1.0;
            c.Endtime       = 1000.0;
            c.CFLFraction   = CFL;
            c.NoOfTimesteps = 200000;

            c.PrintInterval      = 100;
            c.ResidualInterval   = 100;
            c.ResidualLoggerType = ResidualLoggerTypes.ChangeRate | ResidualLoggerTypes.Query;
            c.ResidualBasedTerminationCriteria.Add("changeRate_L2_abs_rhoE", 1E-8);

            //IBM Settings
            c.LevelSetBoundaryTag     = "adiabaticSlipWall";
            c.LevelSetQuadratureOrder = 2 * dgDegree;
            c.AgglomerationThreshold  = 0.3;

            // NEXT STEP: SET THIS BOOL TO FALSE AND JUST USE IN POSITIVE SUB_VOLUME;
            // THEN TRY BOUNDING BOX APPROACH?
            // WHY THE HELL DOES THIS CONFIGURATION FAIL!??!?!?!?
            c.CutCellQuadratureType             = XQuadFactoryHelper.MomentFittingVariants.Classic;
            c.SurfaceHMF_ProjectNodesToLevelSet = false;
            c.SurfaceHMF_RestrictNodes          = true;
            c.SurfaceHMF_UseGaussNodes          = false;
            c.VolumeHMF_NodeCountSafetyFactor   = 3.0;
            c.VolumeHMF_RestrictNodes           = true;
            c.VolumeHMF_UseGaussNodes           = false;

            //Guid restart = new Guid(" 60688cbc-707d-4777-98e6-d237796ec14c");
            //c.RestartInfo = new Tuple<Guid, BoSSS.Foundation.IO.TimestepNumber>(restart, -1);

            // Session Settings
            c.DbPath = @"\\fdyprime\userspace\kraemer-eis\FDY-Cluster\dbe_bump\";
            //c.DbPath = @"/home/kraemer/GaussianBump/dbev2/";
            c.savetodb           = true;
            c.saveperiod         = 20000;
            c.ProjectName        = "BoxHMF=" + c.CutCellQuadratureType + "_Ma=0.5_(" + 2 * noOfCells + "x" + noOfCells + ")_CFL=" + c.CFLFraction + "_lsQuadOrder=" + c.LevelSetQuadratureOrder + "_p=" + dgDegree + "_agg=" + c.AgglomerationThreshold + "_epsX=" + epsilonX + "_epsY=" + epsilonY;
            c.ProjectDescription = "GaussianBump with Ma=0.5";
            c.Tags.Add("Gaussian Bump");
            c.Tags.Add("IBM Test");

            // Solver Type
            c.DomainType         = DomainTypes.StaticImmersedBoundary;
            c.ActiveOperators    = Operators.Convection;
            c.ConvectiveFluxType = ConvectiveFluxTypes.OptimizedHLLC;

            // Time-Stepping Settings
            c.ExplicitScheme = ExplicitSchemes.RungeKutta;
            c.ExplicitOrder  = 1;

            //Material Settings
            c.EquationOfState = IdealGas.Air;



            // Primary CNSVariables
            c.AddVariable(CompressibleVariables.Density, dgDegree);
            c.AddVariable(CompressibleVariables.Momentum.xComponent, dgDegree);
            c.AddVariable(CompressibleVariables.Momentum.yComponent, dgDegree);
            c.AddVariable(CompressibleVariables.Energy, dgDegree);

            c.AddVariable(IBMVariables.LevelSet, lsDegree);



            // Grid

            //switch (noOfCells) {
            //    case 8:
            //        c.GridGuid = new Guid("7337e273-542f-4b97-b592-895ac3422621");
            //        break;
            //    case 16:
            //        c.GridGuid = new Guid("32e5a779-2aef-4ea2-bdef-b158ae785f01");
            //        break;
            //    case 32:
            //        c.GridGuid = new Guid("e96c9f83-3486-4e45-aa3b-9a436445a059");
            //        break;
            //    case 64:
            //        c.GridGuid = new Guid("a86f1b67-4fa3-48ed-b6df-dcea370eb2c0");
            //        break;
            //    default:
            //        throw new ArgumentException("Wrong Grid Input");
            //}



            c.GridFunc = delegate {
                double xBoundary = 12.0;
                double yBoundary = 12.0;
                double yBottom   = 0.0;

                double[] xnodes = GenericBlas.Linspace(-xBoundary, xBoundary, 2 * noOfCells + 1);

                //double ySplit = 6.0;
                //int ySplitNoOfCells = (int) (0.5*noOfCells);
                //double[] ynodes1 = GenericBlas.Linspace(yBottom, ySplit, ySplitNoOfCells + 1);
                //double[] ynodes2 = GenericBlas.Linspace(ySplit, yBoundary, noOfCells-ySplitNoOfCells + 1);
                //ynodes1 = ynodes1.GetSubVector(0, ynodes1.Length - 1);
                //double[] ynodes = ArrayTools.Cat(ynodes1, ynodes2);

                double[] ynodes = GenericBlas.Linspace(yBottom, yBoundary, noOfCells + 1);

                GridCommons grid = Grid2D.Cartesian2DGrid(
                    xnodes,
                    ynodes
                    );

                grid.EdgeTagNames.Add(1, "supersonicinlet");
                grid.EdgeTagNames.Add(2, "adiabaticSlipWall");

                Func <double[], byte> func = delegate(double[] x) {
                    if (Math.Abs(x[0] + xBoundary) < 1e-5)   // Inflow
                    {
                        return(1);
                    }
                    else if (Math.Abs(x[0] - xBoundary) < 1e-5)     // Outflow
                    {
                        return(1);
                    }
                    else if (Math.Abs(x[1] - yBoundary) < 1e-5)     // Top
                    {
                        return(1);
                    }
                    else     // Bottom
                    {
                        return(2);
                    }
                };
                grid.DefineEdgeTags(func);
                grid.Name = "IBM-[" + -xBoundary + "," + xBoundary + "]x[" + yBottom + "," + yBoundary + "]_Cells:(" + 2 * noOfCells + "x" + noOfCells + ")";
                return(grid);
            };

            // Functions
            Func <double[], double, double> rho      = (X, t) => 1.0;
            Func <double[], double, double> u0       = (X, t) => 1.0;
            Func <double[], double, double> u1       = (X, t) => 0.0;
            Func <double[], double, double> pressure = (X, t) => 2.8571428571428;

            //Initial Values
            c.InitialValues_Evaluators.Add(CompressibleVariables.Density, X => rho(X, 0.0));
            c.InitialValues_Evaluators.Add(CNSVariables.Velocity.xComponent, X => u0(X, 0.0));
            c.InitialValues_Evaluators.Add(CNSVariables.Velocity.yComponent, X => u1(X, 0.0));
            c.InitialValues_Evaluators.Add(CNSVariables.Pressure, X => pressure(X, 0.0));

            c.LevelSetFunction = (X, t) => X[1] - epsilonY - 0.01 - 0.3939 * Math.Exp(-0.5 * (X[0] - epsilonX) * (X[0] - epsilonX));

            //BoundaryConditions
            c.AddBoundaryValue("adiabaticSlipWall");
            c.AddBoundaryValue("supersonicInlet", CompressibleVariables.Density, rho);
            c.AddBoundaryValue("supersonicInlet", CNSVariables.Velocity.xComponent, u0);
            c.AddBoundaryValue("supersonicInlet", CNSVariables.Velocity.yComponent, u1);
            c.AddBoundaryValue("supersonicInlet", CNSVariables.Pressure, pressure);


            // Queries

            c.Queries.Add("L2ErrorEntropy", IBMQueries.L2Error(state => state.Entropy, (X, t) => 2.8571428571428));
            return(c);
        }
Example #7
0
        public static IBMControl IBMBumpTest(int noOfCells, int dgDegree, int lsDegree, double CFL)
        {
            IBMControl c = new IBMControl();

            // Solver Settings
            c.dtMin         = 0.0;
            c.dtMax         = 1.0;
            c.Endtime       = 1000.0;
            c.CFLFraction   = CFL;
            c.NoOfTimesteps = 250000;

            c.PrintInterval      = 100;
            c.ResidualInterval   = 100;
            c.ResidualLoggerType = ResidualLoggerTypes.ChangeRate | ResidualLoggerTypes.Query;
            c.ResidualBasedTerminationCriteria.Add("changeRate_L2_abs_rhoE", 1E-8);

            //Guid restart = new Guid(" 60688cbc-707d-4777-98e6-d237796ec14c");
            //c.RestartInfo = new Tuple<Guid, BoSSS.Foundation.IO.TimestepNumber>(restart, -1);

            // Session Settings
            c.DbPath = @"C:\bosss_dbv2\GaussianBump_hhlr";
            //c.DbPath = @"\\fdyprime\userspace\kraemer-eis\FDY-Cluster\dbe_bump\";
            //c.DbPath = @"/home/kraemer/GaussianBump/dbev2/";
            c.savetodb           = true;
            c.saveperiod         = 100;
            c.ProjectName        = "TestsCutCells_(" + 2 * noOfCells + "x" + noOfCells + ")_CFL=" + c.CFLFraction + "_ls=" + lsDegree + "_p=" + dgDegree + "_agg=" + 0.53;
            c.ProjectDescription = "GaussianBump with Ma=0.5";
            c.Tags.Add("Gaussian Bump");
            c.Tags.Add("IBM Test");

            // Solver Type
            c.DomainType         = DomainTypes.StaticImmersedBoundary;
            c.ActiveOperators    = Operators.Convection;
            c.ConvectiveFluxType = ConvectiveFluxTypes.OptimizedHLLC;

            // Time-Stepping Settings
            c.ExplicitScheme = ExplicitSchemes.RungeKutta;
            c.ExplicitOrder  = 1;

            //Material Settings
            c.EquationOfState = IdealGas.Air;

            //IBM Settings
            c.LevelSetBoundaryTag     = "adiabaticSlipWall";
            c.LevelSetQuadratureOrder = 2 * lsDegree;
            c.CutCellQuadratureType   = XQuadFactoryHelper.MomentFittingVariants.Classic;
            c.AgglomerationThreshold  = 0.3;

            // Primary CNSVariables
            c.AddVariable(CompressibleVariables.Density, dgDegree);
            c.AddVariable(CompressibleVariables.Momentum.xComponent, dgDegree);
            c.AddVariable(CompressibleVariables.Momentum.yComponent, dgDegree);
            c.AddVariable(CompressibleVariables.Energy, dgDegree);

            c.AddVariable(IBMVariables.LevelSet, lsDegree);

            c.GridFunc = delegate {
                double xBoundary = 2.0625;
                double yBoundary = 2.0525;
                double yBottom   = -0.01;

                double[] xnodes = GenericBlas.Linspace(-xBoundary, xBoundary, 2 * noOfCells + 1);
                double[] ynodes = GenericBlas.Linspace(yBottom, yBoundary, noOfCells + 1);

                GridCommons grid = Grid2D.Cartesian2DGrid(
                    xnodes,
                    ynodes
                    );

                grid.EdgeTagNames.Add(1, "supersonicinlet");
                grid.EdgeTagNames.Add(2, "adiabaticSlipWall");

                Func <double[], byte> func = delegate(double[] x) {
                    if (Math.Abs(x[0] + xBoundary) < 1e-5)   // Inflow
                    {
                        return(1);
                    }
                    else if (Math.Abs(x[0] - xBoundary) < 1e-5)     // Outflow
                    {
                        return(1);
                    }
                    else if (Math.Abs(x[1] - yBoundary) < 1e-5)     // Top
                    {
                        return(1);
                    }
                    else     // Bottom
                    {
                        return(2);
                    }
                };
                grid.DefineEdgeTags(func);
                grid.Name = "IBM-[" + -xBoundary + "," + xBoundary + "]x[" + yBottom + "," + yBoundary + "]_Cells:(" + 2 * noOfCells + "x" + noOfCells + ")";
                return(grid);
            };

            // Functions
            Func <double[], double, double> rho      = (X, t) => 1.0;
            Func <double[], double, double> u0       = (X, t) => 1.0;
            Func <double[], double, double> u1       = (X, t) => 0.0;
            Func <double[], double, double> pressure = (X, t) => 2.8571428571428;

            //Initial Values
            c.InitialValues_Evaluators.Add(CompressibleVariables.Density, X => rho(X, 0.0));
            c.InitialValues_Evaluators.Add(CNSVariables.Velocity.xComponent, X => u0(X, 0.0));
            c.InitialValues_Evaluators.Add(CNSVariables.Velocity.yComponent, X => u1(X, 0.0));
            c.InitialValues_Evaluators.Add(CNSVariables.Pressure, X => pressure(X, 0.0));

            c.LevelSetFunction = (X, t) => X[1] - 0.3939 * Math.Exp(-0.5 * X[0] * X[0]);

            //BoundaryConditions
            c.AddBoundaryValue("adiabaticSlipWall");
            c.AddBoundaryValue("supersonicInlet", CompressibleVariables.Density, rho);
            c.AddBoundaryValue("supersonicInlet", CNSVariables.Velocity.xComponent, u0);
            c.AddBoundaryValue("supersonicInlet", CNSVariables.Velocity.yComponent, u1);
            c.AddBoundaryValue("supersonicInlet", CNSVariables.Pressure, pressure);


            // Queries

            c.Queries.Add("L2ErrorEntropy", IBMQueries.L2Error(state => state.Entropy, (X, t) => 2.8571428571428));
            return(c);
        }