Example #1
0
        public static Anisou[] FromHessian(Mode[] modesMassWeighted, double[] mass, double scale = 10000 *1000
                                           , string cachepath = null
                                           )
        {
            if (cachepath != null && HFile.Exists(cachepath))
            {
                List <Anisou> lstanisou;
                HDebug.Verify(HSerialize.Deserialize(cachepath, null, out lstanisou));
                return(lstanisou.ToArray());
            }

            int size = modesMassWeighted.Size();

            HDebug.Assert(size == mass.Length);
            Anisou[] anisous = new Anisou[size];

            for (int i = 0; i < size; i++)
            {
                MatrixByArr invHii = new double[3, 3];
                foreach (Mode mode in modesMassWeighted)
                {
                    Vector modei = mode.GetEigvecOfAtom(i);
                    invHii = invHii + LinAlg.VVt(modei, modei) * mode.eigval;
                }

                MatrixByArr Ui = invHii * scale / mass[i];

                anisous[i] = Anisou.FromMatrix(Ui);
            }

            if (cachepath != null)
            {
                HSerialize.Serialize(cachepath, null, new List <Anisou>(anisous));
            }

            return(anisous);
        }
Example #2
0
        public static Anisou[] FromHessian(MatrixByArr hessMassWeighted, double[] mass, double scale = 10000 *1000
                                           , string cachepath = null
                                           )
        {
            /// Estimation of "anisotropic temperature factors" (ANISOU)
            ///
            /// delta = hess^-1 * force
            ///       = (0 + V7*V7'/L7 + V8*V8'/L8 + V9*V9'/L9 + ...) * force    (* assume that 1-6 eigvecs/eigvals are ignored, because rot,trans *)
            ///
            /// Assume that force[i] follows gaussian distributions N(0,1). Here, if there are 1000 samples, let denote i-th force as fi, and its j-th element as fi[j]
            /// Then, $V7' * fi = si7, V8' * fi = si8, ...$ follows gaussian distribution N(0,1), too.
            /// Its moved position by k-th eigen component is determined then, as
            ///     dik = (Vk * Vk' / Lk) * Fi
            ///         = Vk / Lk * (Vk' * Fi)
            ///         = Vk / Lk * Sik.
            /// Additionally, the moved position j-th atom is:
            ///     dik[j] = Vk[j] / Lk[j] * Sik.
            /// and its correlation matrix is written as (because its mean position is 0 !!!):
            ///     Cik[j] = dik[j] * dik[j]'
            ///            = [dik[j]_x * dik[j]_x    dik[j]_x * dik[j]_y    dik[j]_x * dik[j]_z]
            ///              [dik[j]_y * dik[j]_x    dik[j]_y * dik[j]_y    dik[j]_y * dik[j]_z]
            ///              [dik[j]_z * dik[j]_x    dik[j]_z * dik[j]_y    dik[j]_z * dik[j]_z]
            ///            = (Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * (Sik*Sik).
            ///
            /// Note that Sik*Sik follows the chi-square distribution, because Sik follows the gaussian distribution N(0,1).
            /// Additionally, note that the thermal fluctuation is (not one projection toward k-th eigen component with only i-th force, but) the results of 1..i.. forced movements and 1..k.. eigen components.
            /// Therefore, for j-th atom, the accumulation of the correlation over all forces (1..i..) with all eigen components (1..k..) is:
            ///     C[j] = sum_{i,k} {(Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * (Sik*Sik)}.
            ///
            /// Here, Sik is normal distribution independent to i and k. Therefore, the mean of C[j] is
            ///     E(C[j]) = E( sum_{i,k} {(Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * (Sik*Sik)} )
            ///             = sum_{i,k} E( (Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * (Sik*Sik) )
            ///             = sum_{i,k} { (Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * E(Sik*Sik) }
            ///             = sum_{i,k} { (Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) * 1          }          (* because mean of E(x*x)=1 where x~N(0,1) *)
            ///             = sum_{k} { (Vk[j] * Vk[j]') / (Lk[j]*Lk[j]) }
            ///
            /// Note that E(C[j]) is same to the j-th diagonal component of inverse hessian matrix (except, the eigenvalues are squared).
            ///
            /// Fixation: Gromacx generate the ensemble X by
            ///               X[j] = sum_{k} {Vk / sqrt(Lk[j]) / sqrt(mass[j]) * x_k},
            ///           where x~N(0,1). However, the above is assumed as
            ///               X[j] = sum_{k} {Vk / Lk[j] * x_k}.
            ///           In order to apply the assumption by the Gromacs ensemble, The equation should be fixed as
            ///               E(C[j]) = sum_{k} { (Vk[j] * Vk[j]') / (sqrt(Lk[j])*sqrt(Lk[j])) }
            ///                       = sum_{k} { (Vk[j] * Vk[j]') / Lk[j] / mass[j] }
            ///

            int size = mass.Length;

            HDebug.Assert(hessMassWeighted.RowSize == size * 3, hessMassWeighted.ColSize == size * 3);
            Anisou[] anisous = new Anisou[size];

            if (cachepath != null && HFile.Exists(cachepath))
            {
                List <Anisou> lstanisou;
                HDebug.Verify(HSerialize.Deserialize <List <Anisou> >(cachepath, null, out lstanisou));
                anisous = lstanisou.ToArray();
                return(anisous);
            }

            // anisotropic temperature factors
            using (new Matlab.NamedLock("ANISOU"))
            {
                Matlab.Clear("ANISOU");
                Matlab.PutMatrix("ANISOU.H", hessMassWeighted);
                Matlab.Execute("[ANISOU.V,ANISOU.D] = eig(ANISOU.H);");
                Matlab.Execute("ANISOU.D = diag(ANISOU.D);");                                 // get diagonal
                {
                    Matlab.Execute("[ANISOU.sortD, ANISOU.sortIdxD] = sort(abs(ANISOU.D));"); // sorted index of abs(D)
                    Matlab.Execute("ANISOU.D(ANISOU.sortIdxD(1:6)) = 0;");                    // set the 6 smallest eigenvalues as zero
                    //Matlab.Execute("ANISOU.D(ANISOU.D < 0) = 0;");                              // set negative eigenvalues as zero
                }
                //{
                //    Matlab.Execute("ANISOU.D(1:6) = 0;");
                //}
                Matlab.Execute("ANISOU.invD = 1 ./ ANISOU.D;");                             // set invD
                Matlab.Execute("ANISOU.invD(ANISOU.D == 0) = 0;");                          // set Inf (by divided by zero) as zero
                //Matlab.Execute("ANISOU.D = ANISOU.D .^ 2;"); // assume the gromacs ensemble condition
                Matlab.Execute("ANISOU.invH = ANISOU.V * diag(ANISOU.invD) * ANISOU.V';");
                for (int i = 0; i < size; i++)
                {
                    string      idx = string.Format("{0}:{1}", i * 3 + 1, i * 3 + 3);
                    MatrixByArr U   = Matlab.GetMatrix("ANISOU.invH(" + idx + "," + idx + ")");
                    U *= (scale / mass[i]);

                    anisous[i] = Anisou.FromMatrix(U);
                }
                Matlab.Clear("ANISOU");
            }

            if (cachepath != null)
            {
                HSerialize.Serialize(cachepath, null, new List <Anisou>(anisous));
            }

            return(anisous);
        }
Example #3
0
                public static void SelfTest()
                {
                    if (HDebug.Selftest() == false)
                    {
                        return;
                    }

                    string temppath            = @"K:\temp\";
                    string tinkerpath_testgrad = "\"" + @"C:\Program Files\Tinker\bin-win64-8.2.1\testgrad.exe" + "\"";
                    string tinkerpath_testhess = "\"" + @"C:\Program Files\Tinker\bin-win64-8.2.1\testhess.exe" + "\"";

                    var xyz  = Tinker.Xyz.FromLines(SelftestData.lines_1L2Y_xyz);
                    var prm  = Tinker.Prm.FromLines(SelftestData.lines_charmm22_prm);
                    var univ = Universe.Build(xyz, prm);

                    var testhess = Tinker.Run.Testhess(tinkerpath_testhess, xyz, prm, temppath
                                                       , HessMatrixZeros: HessMatrixLayeredArray.ZerosHessMatrixLayeredArray
                                                       );
                    var testgrad = Tinker.Run.Testgrad(tinkerpath_testgrad, xyz, prm, temppath);
                    var hessinfo = Hess.HessInfo.FromTinker(xyz, prm, testhess.hess);

                    var hessforcinfo = HessForc.Coarse.HessForcInfo.From(hessinfo);

                    hessforcinfo.forc = testgrad.anlyts.GetForces(xyz.atoms);
                    var coarseinfo_debug = HessForc.Coarse.GetCoarseHessForc
                                               (hessforcinfo
                                               , coords: hessinfo.coords
                                               , GetIdxKeepListRemv: GetIdxKeepListRemv
                                               , ila: null
                                               , thres_zeroblk: double.Epsilon
                                               , options: new string[] { "Debug" }
                                               );

                    var coarseinfo_simple = HessForc.Coarse.GetCoarseHessForc
                                                (hessforcinfo
                                                , coords: hessinfo.coords
                                                , GetIdxKeepListRemv: GetIdxKeepListRemv
                                                , ila: null
                                                , thres_zeroblk: double.Epsilon
                                                , options: new string[] { "SubSimple" }
                                                );
                    double absmax_simple = (coarseinfo_debug.hess - coarseinfo_simple.hess).HAbsMax();

                    HDebug.Assert(Math.Abs(absmax_simple) < 0.00000001);
                    double absmax_simple_forc = (coarseinfo_debug.forc.ToVector() - coarseinfo_simple.forc.ToVector()).ToArray().MaxAbs();

                    HDebug.Assert(Math.Abs(absmax_simple_forc) < 0.00000001);

                    var coarseinfo_1iter = HessForc.Coarse.GetCoarseHessForc
                                               (hessforcinfo
                                               , coords: hessinfo.coords
                                               , GetIdxKeepListRemv: GetIdxKeepListRemv
                                               , ila: null
                                               , thres_zeroblk: double.Epsilon
                                               , options: new string[] { "OneIter" }
                                               );
                    double absmax_1iter = (coarseinfo_debug.hess - coarseinfo_1iter.hess).HAbsMax();

                    HDebug.Assert(Math.Abs(absmax_1iter) < 0.00000001);
                    double absmax_1iter_forc = (coarseinfo_debug.forc.ToVector() - coarseinfo_1iter.forc.ToVector()).ToArray().MaxAbs();

                    HDebug.Assert(Math.Abs(absmax_1iter_forc) < 0.00000001);

                    var coarseinfo_iter = HessForc.Coarse.GetCoarseHessForc
                                              (hessforcinfo
                                              , coords: hessinfo.coords
                                              , GetIdxKeepListRemv: GetIdxKeepListRemv
                                              , ila: null
                                              , thres_zeroblk: double.Epsilon
                                              , options: null
                                              );
                    double absmax_iter = (coarseinfo_debug.hess - coarseinfo_iter.hess).HAbsMax();

                    HDebug.Assert(Math.Abs(absmax_iter) < 0.00000001);
                    double absmax_iter_forc = (coarseinfo_debug.forc.ToVector() - coarseinfo_iter.forc.ToVector()).ToArray().MaxAbs();

                    HDebug.Assert(Math.Abs(absmax_iter_forc) < 0.00000001);

                    double tolerance = 1.0E-6; // 0.00001;
                    var    coarseinfo_1iter_tolerant = HessForc.Coarse.GetCoarseHessForc
                                                           (hessforcinfo
                                                           , coords: hessinfo.coords
                                                           , GetIdxKeepListRemv: GetIdxKeepListRemv
                                                           , ila: null
                                                           , thres_zeroblk: tolerance
                                                           , options: new string[] { "OneIter" }
                                                           );
                    double absmax_1iter_tolerant = (coarseinfo_debug.hess - coarseinfo_1iter_tolerant.hess).HAbsMax();

                    HDebug.Assert(Math.Abs(absmax_1iter_tolerant) < tolerance * 10);
                    double absmax_1iter_tolerant_forc = (coarseinfo_debug.forc.ToVector() - coarseinfo_1iter_tolerant.forc.ToVector()).ToArray().MaxAbs();

                    HDebug.Assert(Math.Abs(absmax_1iter_tolerant_forc) < tolerance * 10);

                    var coarseinfo_iter_tolerant = HessForc.Coarse.GetCoarseHessForc
                                                       (hessforcinfo
                                                       , coords: hessinfo.coords
                                                       , GetIdxKeepListRemv: GetIdxKeepListRemv
                                                       , ila: null
                                                       , thres_zeroblk: tolerance
                                                       , options: null
                                                       );
                    double absmax_iter_tolerant = (coarseinfo_debug.hess - coarseinfo_iter_tolerant.hess).HAbsMax();

                    HDebug.Assert(Math.Abs(absmax_iter_tolerant) < tolerance * 10);
                    double absmax_iter_tolerant_forc = (coarseinfo_debug.forc.ToVector() - coarseinfo_iter_tolerant.forc.ToVector()).ToArray().MaxAbs();

                    HDebug.Assert(Math.Abs(absmax_iter_tolerant_forc) < tolerance * 10);

                    string tempfilepath = HFile.GetTempPath(temppath, "test_serialzation_CoarseHessForc.dat");

                    HSerialize.Serialize(tempfilepath, null, coarseinfo_iter_tolerant);
                    var    coarseinfo_iter_tolerant2 = HSerialize.Deserialize <HessForcInfo>(tempfilepath, null);
                    double absmax_iter_tolerant_file = (coarseinfo_iter_tolerant.hess - coarseinfo_iter_tolerant.hess).HAbsMax();

                    HDebug.Assert(Math.Abs(absmax_iter_tolerant_file) == 0);
                    double absmax_iter_tolerant_file_forc = (coarseinfo_iter_tolerant.forc.ToVector() - coarseinfo_iter_tolerant.forc.ToVector()).ToArray().MaxAbs();

                    HDebug.Assert(Math.Abs(absmax_iter_tolerant_file_forc) == 0);
                    HFile.Delete(tempfilepath);
                }
Example #4
0
        public static PdbInfo[] GetPdbInfo(params string[] pdbids)
        {
            Dictionary <string, PdbInfo> pdbinfos = new Dictionary <string, PdbInfo>();
            int VER = 0;

            string cachepath = RootPath + @"cache\GetPdbInfo.data";

            if (HFile.Exists(cachepath))
            {
                HSerialize.Deserialize(cachepath, VER, out pdbinfos);
                if (pdbinfos == null)
                {
                    pdbinfos = new Dictionary <string, PdbInfo>();
                }
            }

            bool updated = false;

            for (int i = 0; i < pdbids.Length; i++)
            {
                string pdbid = pdbids[i];

                if (pdbinfos.ContainsKey(pdbid) == false)
                {
                    pdbinfos.Add(pdbid, null);
                }

                if (pdbinfos[pdbid] != null)
                {
                    continue;
                }

                updated = true;
                //continue;

                List <string> pdblines = GetPdbLines(pdbid);
                if (pdblines == null)
                {
                    pdblines = GetPdbLines(pdbid, forceToRedownload: true);
                }
                HDebug.Assert(pdblines != null);
                if (pdblines == null)
                {
                    System.Console.WriteLine(pdbid + " is not processed");
                    continue;
                }

                PdbInfo pdbinfo = GetPdbInfo(pdbid, pdblines);
                pdbinfos[pdbid] = pdbinfo;

                if (i % 10 == 0)
                {
                    System.Console.WriteLine(pdbid + " is processed. There are " + (pdbids.Length - i).ToString() + " unprocessed pdbs.");
                }

                if (i % 200 == 0)
                {
                    HSerialize.Serialize(cachepath, VER, pdbinfos);
                    updated = false;
                    System.Console.WriteLine("serialize cache");
                }
            }
            //GetPdbInfo(pdbinfos);

            if (updated)
            {
                HSerialize.Serialize(cachepath, VER, pdbinfos);
            }

            return(pdbinfos.HSelectByKeys(pdbids));
        }
Example #5
0
 public void SaveCoords(string path, Vector[] coords)
 {
     HSerialize.Serialize(path, null, coords);
 }