Example #1
0
        public void SpringInXAxis()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss2D);                              // we will create and analyze a 1D spring in the vertical
            FiniteElementNode  node1 = model.NodeFactory.CreateFor2DTruss(0, 0);                               // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.X);                                                     // constrain this node from moving in the X axis
            model.ConstrainNode(node1, DegreeOfFreedom.Z);                                                     // also constrain it from moving in the Y axis

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(1, 0);                                // create a second node at a distance 1 metre along the X axis.

            model.ConstrainNode(node2, DegreeOfFreedom.Z);                                                     // fix this node from moving along the Y-axis.  It is still free to move along the X-axis however.

            LinearConstantSpring spring = model.ElementFactory.CreateLinearConstantSpring(node1, node2, 1000); // create a spring between the two nodes of a stiffness of 1000 Newtons per metre

            ForceVector force = model.ForceFactory.CreateForTruss(10, 0);                                      // Create a force of 10 Newtons along the x-axis.

            model.ApplyForceToNode(force, node2);                                                              // Apply that force to the second node

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);                             // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve();                                                     // ask the solver to solve the model and return results

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);                           // get the displacement at the second node

            Assert.AreEqual(0.01, displacementAtNode2.X);                                                      // check that we calculated 0.010 metres (10 millimetres) along the Y axis.

            ReactionVector reactionAtNode1 = results.GetReaction(node1);                                       //get the reaction at the first node

            Assert.AreEqual(-10, reactionAtNode1.X);                                                           // Check that we have calculated a reaction of -10 Newtons in the X axis.
            Assert.AreEqual(0, reactionAtNode1.Z);                                                             // and a reaction of 0 Newtons in the Y axis.
        }
Example #2
0
        public void ReversedCantilever()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Beam1D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0);

            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.YY);

            FiniteElementNode node2 = model.NodeFactory.Create(3.0);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 0);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002);

            model.ElementFactory.CreateLinear1DBeam(node2, node1, material, section);  //connecting the nodes in reverse order to the Cantilever() example

            ForceVector force = model.ForceFactory.CreateFor1DBeam(-10000, 0);

            model.ApplyForceToNode(force, node2);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction = results.GetReaction(node1);

            Assert.AreEqual(10000, reaction.Z, 0.001);
            Assert.AreEqual(-30000, reaction.YY, 0.001);

            DisplacementVector displacement = results.GetDisplacement(node2);

            Assert.AreEqual(-0.00214, displacement.Z, 0.0005);
            Assert.AreEqual(0.00107, displacement.YY, 0.0001);
        }
Example #3
0
        public void SpringAt60DegreesInXYPlane()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss2D);     // we will create and analyze a 2D truss system
            FiniteElementNode  node1 = model.NodeFactory.CreateFor2DTruss(0, 0);      // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.X);                            // constrain this node from moving in the X axis
            model.ConstrainNode(node1, DegreeOfFreedom.Z);                            // also constrain it from moving in the Y axis

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(1, 1.73205); // create a second node at a distance 1 metre along the X axis and 1.73 metres along the Y axis (giving an angle of 60 degrees from x-axis).

            model.ConstrainNode(node2, DegreeOfFreedom.X);

            LinearConstantSpring spring = model.ElementFactory.CreateLinearConstantSpring(node1, node2, 1000); // create a spring between the first two nodes of a stiffness of 1000 Newtons per metre

            ForceVector force = model.ForceFactory.CreateForTruss(0, 10);                                      // Create a force of with components of 10 Newtons along the y-axis.

            model.ApplyForceToNode(force, node2);                                                              // Apply that force to the second node

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);                             // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve();                                                     // ask the solver to solve the model and return results

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);                           // get the displacement at the second node

            Assert.AreEqual(0, displacementAtNode2.X);                                                         // Check that there is no displacement in the x-axis
            Assert.AreEqual(0.013333, displacementAtNode2.Z, 0.001);                                           // and 0.01333 metres (13 millimetres) along the Y axis.

            ReactionVector reactionAtNode1 = results.GetReaction(node1);                                       //get the reaction at the first node

            Assert.AreEqual(-5.774, reactionAtNode1.X, 0.001);                                                 // Check that we have calculated a reaction of 10/SQRT(3) Newtons in the X axis.
            Assert.AreEqual(-10, reactionAtNode1.Z, 0.001);                                                    // and a reaction of -10 Newtons in the Y axis.
        }
Example #4
0
        public void CalculateModelOfOneSpringWith2DegreesOfFreedom()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss1D);  // we will create and analyze a 1D truss system
            FiniteElementNode  node1 = model.NodeFactory.Create(0);                // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.X);                         // constrain this node from moving in the X axis

            FiniteElementNode node2 = model.NodeFactory.Create(1.0);               // create a second node at a distance 1 metre along the X axis

            model.ElementFactory.CreateLinearConstantSpring(node1, node2, 2000.0); // create a spring between the two nodes of a stiffness of 2000 Newtons per metre

            ForceVector force = model.ForceFactory.Create(10.0);                   // Create a force of 10 Newtons in the x direction

            model.ApplyForceToNode(force, node2);                                  // Apply that force to the second node

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model); // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve();                         // ask the solver to solve the model and return results

            DisplacementVector displacement = results.GetDisplacement(node2);      // get the displacement at the second node

            Assert.AreEqual(0.005, displacement.X);                                // Check that we have calculated a displacement of 0.005 metres (5 millimetres) along the X axis.

            ReactionVector reaction = results.GetReaction(node1);                  //get the reaction at the first node

            Assert.AreEqual(-10, reaction.X);                                      // Check that we have calculated a reaction of -10 Newtons in the X axis.
        }
Example #5
0
        public void SetUp()
        {
            model = new FiniteElementModel(ModelType.Truss1D);
            node  = model.NodeFactory.Create(0);

            SUT = new FiniteElementResults(ModelType.Truss1D);
        }
Example #6
0
        public void Cantilever()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Beam1D); // we will create and analyze a 1D beam system
            FiniteElementNode  node1 = model.NodeFactory.Create(0);              // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.Z);                       // constrain the node from moving in the Z-axis
            model.ConstrainNode(node1, DegreeOfFreedom.YY);                      // constrain this node from rotating around the Y-axis

            FiniteElementNode node2 = model.NodeFactory.Create(3.0);             // create a second node at a distance 1 metre along the X axis

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 0);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002);

            model.ElementFactory.CreateLinear1DBeam(node1, node2, material, section);

            ForceVector force = model.ForceFactory.CreateFor1DBeam(-10000, 0);     // Create a force of 10 KiloNewtons in the z direction

            model.ApplyForceToNode(force, node2);                                  // Apply that force to the second node

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model); // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve();                         // ask the solver to solve the model and return results

            ReactionVector reaction = results.GetReaction(node1);                  //get the reaction at the first node

            Assert.AreEqual(10000, reaction.Z, 0.001);                             // Check that we have calculated a reaction of 10 KiloNewtons in the Z-axis
            Assert.AreEqual(-30000, reaction.YY, 0.001);                           // Check that we have calculated a reaction of -30 KiloNewtonMetres around the YY axis.

            DisplacementVector displacement = results.GetDisplacement(node2);      // get the displacement at the second node

            Assert.AreEqual(-0.00214, displacement.Z, 0.0005);
            Assert.AreEqual(0.00107, displacement.YY, 0.0001);
        }
Example #7
0
        public void SetUp()
        {
            model = new FiniteElementModel(ModelType.Truss1D);
            node = model.NodeFactory.Create(0);

            SUT = new FiniteElementResults(ModelType.Truss1D);
        }
Example #8
0
        public void OneVerticalQuadFixed3PointsMembrane()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Membrane3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0.0, 0.0, 0.0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0.0, 0.0);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(1.0, 0.0, 1.0);

            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(0.0, 0.0, 1.0);

            model.ConstrainNode(node4, DegreeOfFreedom.Y);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0.3, 0);

            model.ElementFactory.CreateLinearConstantStressQuadrilateral(node1, node2, node3, node4, material, 0.1);

            ForceVector force = model.ForceFactory.Create(10000, 0, 0, 0, 0, 0);

            model.ApplyForceToNode(force, node4);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction1 = results.GetReaction(node1);

            Console.WriteLine("\nReaction1 : \n" + reaction1);
            ReactionVector reaction2 = results.GetReaction(node2);

            Console.WriteLine("\nReaction2 : \n" + reaction2);
            ReactionVector reaction3 = results.GetReaction(node3);

            Console.WriteLine("\nReaction3 : \n" + reaction3);
            DisplacementVector displacement4 = results.GetDisplacement(node4);

            Console.WriteLine("\nDisplacement4 : \n" + displacement4);

            Assert.AreEqual(2621, reaction1.X, 1);
            Assert.AreEqual(-3039, reaction1.Z, 1);
            Assert.AreEqual(-5660, reaction2.X, 1);
            Assert.AreEqual(1706, reaction2.Z, 1);
            Assert.AreEqual(-6961, reaction3.X, 1);
            Assert.AreEqual(1333, reaction3.Z, 1);

            Assert.AreEqual(0.0000012400, displacement4.X, 0.0000000001);
            Assert.AreEqual(0.0000004875, displacement4.Z, 0.0000000001);
        }
        public void CalculateGridOf3BeamsAnd24Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Slab2D);

            FiniteElementNode node1 = model.NodeFactory.Create(4, 4);

            FiniteElementNode node2 = model.NodeFactory.Create(4, 0);

            model.ConstrainNode(node2, DegreeOfFreedom.Z);
            model.ConstrainNode(node2, DegreeOfFreedom.XX);
            model.ConstrainNode(node2, DegreeOfFreedom.YY);

            FiniteElementNode node3 = model.NodeFactory.Create(0, 0);

            model.ConstrainNode(node3, DegreeOfFreedom.Z);
            model.ConstrainNode(node3, DegreeOfFreedom.XX);
            model.ConstrainNode(node3, DegreeOfFreedom.YY);

            FiniteElementNode node4 = model.NodeFactory.Create(0, 4);

            model.ConstrainNode(node4, DegreeOfFreedom.Z);
            model.ConstrainNode(node4, DegreeOfFreedom.XX);
            model.ConstrainNode(node4, DegreeOfFreedom.YY);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section  = new GenericCrossSection(0.02, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node4, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, -20000, 0, 0, 0);

            model.ApplyForceToNode(force, node1);

            IFiniteElementSolver solver  = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);
            ReactionVector     node2Reaction     = results.GetReaction(node2);
            ReactionVector     node3Reaction     = results.GetReaction(node3);
            ReactionVector     node4Reaction     = results.GetReaction(node4);

            Assert.AreEqual(-0.0033, node1Displacement.Z, 0.0001);
            Assert.AreEqual(-0.0010, node1Displacement.XX, 0.0001);
            Assert.AreEqual(0.0010, node1Displacement.YY, 0.0001);

            Assert.AreEqual(10794, node2Reaction.Z, 1);
            Assert.AreEqual(31776, node2Reaction.XX, 1);
            Assert.AreEqual(-1019, node2Reaction.YY, 1);

            Assert.AreEqual(-1587, node3Reaction.Z, 1);
            Assert.AreEqual(4030, node3Reaction.XX, 1);
            Assert.AreEqual(-4030, node3Reaction.YY, 1);

            Assert.AreEqual(10794, node4Reaction.Z, 1);
            Assert.AreEqual(1019, node4Reaction.XX, 1);
            Assert.AreEqual(-31776, node4Reaction.YY, 1);
        }
Example #10
0
        public void CanSolveSimple1DOFSpring()
        {
            FiniteElementResults results = SUT.Solve();

            Assert.IsNotNull(results);
            Assert.AreEqual(5, results.GetDisplacement(node2).X);
            Assert.AreEqual(-20, results.GetReaction(node1).X);
        }
Example #11
0
        public void TwoTriangleWall()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Membrane3D); // we will create and analyze a 2D slab system
            FiniteElementNode  node1 = model.NodeFactory.Create(0.0, 0.0, 0.0);      // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.X);                           // constrain the node from moving in the x-axis
            model.ConstrainNode(node1, DegreeOfFreedom.Y);                           // constrain the node from moving in the y-axis
            model.ConstrainNode(node1, DegreeOfFreedom.Z);                           // constrain the node from moving in the z-axis

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0.0, 0.0);       // create a second node at a distance 1 metre along the X axis

            model.ConstrainNode(node2, DegreeOfFreedom.X);                           // constrain the node from moving in the x-axis
            model.ConstrainNode(node2, DegreeOfFreedom.Y);                           // constrain the node from moving in the y-axis
            model.ConstrainNode(node2, DegreeOfFreedom.Z);                           // constrain the node from moving in the z-axis

            FiniteElementNode node3 = model.NodeFactory.Create(0.0, 1.0, 0.0);

            model.ConstrainNode(node3, DegreeOfFreedom.Z);             // constrain the node from moving in the z-axis

            FiniteElementNode node4 = model.NodeFactory.Create(1.0, 1.0, 0.0);

            model.ConstrainNode(node4, DegreeOfFreedom.Z);             // constrain the node from moving in the z-axis

            IMaterial material = new GenericElasticMaterial(0, 200000, 0.2, 84000);

            model.ElementFactory.CreateLinearConstantStrainTriangle(node1, node2, node3, material, 0.1);             // create a triangle of thickness of 0.1 metres
            model.ElementFactory.CreateLinearConstantStrainTriangle(node2, node4, node3, material, 0.1);

            ForceVector force = model.ForceFactory.Create(0, -10); // Create a force of 10 Newtons in the y direction

            model.ApplyForceToNode(force, node3);                  // Apply that force to the third node
            model.ApplyForceToNode(force, node4);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction1 = results.GetReaction(node1);             //get the reaction at the first node

            Console.WriteLine("\nReaction1 : \n" + reaction1);
            ReactionVector reaction2 = results.GetReaction(node2);

            Console.WriteLine("\nReaction2 : \n" + reaction2);
            Assert.AreEqual(20, reaction1.Y + reaction2.Y, 0.001);

            DisplacementVector displacement3 = results.GetDisplacement(node3);              // get the displacement at the second node

            Console.WriteLine("\nDisplacement3 : \n" + displacement3);
            Assert.AreNotEqual(0.0, displacement3.X);                          // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreNotEqual(0.0, displacement3.Y);                          // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreEqual(0.0, displacement3.Z);                             // TODO calculate the actual value, rather than just checking we have any value

            DisplacementVector displacement4 = results.GetDisplacement(node4); // get the displacement at the second node

            Console.WriteLine("\nDisplacement4 : \n" + displacement4);
            Assert.AreNotEqual(0.0, displacement4.X);          // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreNotEqual(0.0, displacement4.Y);          // TODO calculate the actual value, rather than just checking we have any value
            Assert.AreEqual(0.0, displacement4.Z);             // TODO calculate the actual value, rather than just checking we have any value
        }
Example #12
0
        public void Calculate2DPortalFrameOf3BeamsAnd12Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(-3, 0, 0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);
            model.ConstrainNode(node1, DegreeOfFreedom.YY);

            FiniteElementNode node2 = model.NodeFactory.Create(-3, 0, 6);

            FiniteElementNode node3 = model.NodeFactory.Create(3, 0, 6);

            FiniteElementNode node4 = model.NodeFactory.Create(3, 0, 0);

            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);
            model.ConstrainNode(node4, DegreeOfFreedom.XX);
            model.ConstrainNode(node4, DegreeOfFreedom.YY);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 84000000);
            ICrossSection section  = new GenericCrossSection(0.0002, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node3, node4, material, section);

            ForceVector force2 = model.ForceFactory.Create(15000, 0, 0, 0, -10000, 0);

            model.ApplyForceToNode(force2, node2);

            IFiniteElementSolver solver  = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node2Displacement = results.GetDisplacement(node2);
            DisplacementVector node3Displacement = results.GetDisplacement(node3);
            ReactionVector     node1Reaction     = results.GetReaction(node1);
            ReactionVector     node4Reaction     = results.GetReaction(node4);

            Assert.AreEqual(0.0052843, node2Displacement.X, 0.0001);
            Assert.AreEqual(0.0006522, node2Displacement.Z, 0.0001);
            Assert.AreEqual(0.0005, node2Displacement.YY, 0.0001);

            Assert.AreEqual(0.0044052, node3Displacement.X, 0.0001);
            Assert.AreEqual(-0.0006522, node3Displacement.Z, 0.0001);
            Assert.AreEqual(0.0006, node3Displacement.YY, 0.0001);

            Assert.AreEqual(-9000, node1Reaction.X, 500);
            Assert.AreEqual(-5000, node1Reaction.Z, 500);
            Assert.AreEqual(-30022, node1Reaction.YY, 500);

            Assert.AreEqual(-6000, node4Reaction.X, 500);
            Assert.AreEqual(5000, node4Reaction.Z, 500);
            Assert.AreEqual(-22586, node4Reaction.YY, 500);
        }
Example #13
0
        public void ThreeNodeSimplySupportedBeam() //TODO verify results using independent check
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Frame2D);
            FiniteElementNode  node1 = model.NodeFactory.CreateFor2DTruss(0, 0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(1, 0);

            FiniteElementNode node3 = model.NodeFactory.CreateFor2DTruss(2, 0);

            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            IMaterial     material = new GenericElasticMaterial(0, 10000000000, 0, 0);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002);

            model.ElementFactory.CreateLinear1DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear1DBeam(node2, node3, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, -10000, 0, 0, 0);

            model.ApplyForceToNode(force, node2);

            IFiniteElementSolver solver = new MatrixInversionLinearSolver(model);

            Stiffness.GlobalModelStiffnessMatrixBuilder gmsmb = new SharpFE.Stiffness.GlobalModelStiffnessMatrixBuilder(model);
            Console.WriteLine(gmsmb.BuildKnownForcesUnknownDisplacementStiffnessMatrix());

            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);

            Console.WriteLine("node1Displacement : " + node1Displacement);

            DisplacementVector node2Displacement = results.GetDisplacement(node2);

            Console.WriteLine("node2Displacement : " + node2Displacement);

            DisplacementVector node3Displacement = results.GetDisplacement(node3);

            Console.WriteLine("node3Displacement : " + node3Displacement);

            ReactionVector node1Reaction = results.GetReaction(node1);

            Console.WriteLine("node1Reaction : " + node1Reaction);

            ReactionVector node3Reaction = results.GetReaction(node3);

            Console.WriteLine("node5Reaction : " + node3Reaction);

            Assert.AreEqual(-0.000833333, node2Displacement.Z, 0.0000001);
            Assert.AreEqual(5000, node1Reaction.Z, 0.001);
            Assert.AreEqual(5000, node3Reaction.Z, 0.001);
            Assert.AreEqual(0, node2Displacement.YY, 0.0001);
            Assert.AreEqual(0.00125, node1Displacement.YY, 0.0000001);
            Assert.AreEqual(-0.00125, node3Displacement.YY, 0.0000001);
        }
Example #14
0
        public void CanCalculateCorrectReactionsWithForcesAppliedToConstrainedNodes()
        {
            model.ApplyForceToNode(force1, node1);

            FiniteElementResults results = SUT.Solve();

            Assert.IsNotNull(results);
            Assert.AreEqual(5, results.GetDisplacement(node2).X);
            Assert.AreEqual(0, results.GetReaction(node1).X);
        }
Example #15
0
        public void Calculate2DTrussOf3BarsAnd8Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss2D);

            FiniteElementNode node1 = model.NodeFactory.CreateFor2DTruss(0, 0);

            FiniteElementNode node2 = model.NodeFactory.CreateFor2DTruss(0, 10);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.CreateFor2DTruss(10, 10);

            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.CreateFor2DTruss(10, 0);

            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            IMaterial     material = new GenericElasticMaterial(0, 30000000, 0, 0);
            ICrossSection section  = new SolidRectangle(2, 1);

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node3, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node4, material, section);

            ForceVector externalForce = model.ForceFactory.CreateForTruss(0, -10000);

            model.ApplyForceToNode(externalForce, node1);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reactionAtNode2 = results.GetReaction(node2);

            Assert.AreEqual(0, reactionAtNode2.X, 1);
            Assert.AreEqual(7929, reactionAtNode2.Z, 1);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);

            Assert.AreEqual(2071, reactionAtNode3.X, 1);
            Assert.AreEqual(2071, reactionAtNode3.Z, 1);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);

            Assert.AreEqual(-2071, reactionAtNode4.X, 1);
            Assert.AreEqual(0, reactionAtNode4.Z, 1);

            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);

            Assert.AreEqual(0.00035, displacementAtNode1.X, 0.00001);               ///NOTE this does not match the example in the book, but was instead verified by commercial FE software.  It appears as it may be an errata in the book.
            Assert.AreEqual(-0.00132, displacementAtNode1.Z, 0.00001);              ///NOTE this does not match the example in the book, but was instead verified by commercial FE software.  It appears as it may be an errata in the book.
        }
        public void Calculate3DFrameOf3BeamsAnd24Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0, 0, 0);

            FiniteElementNode node2 = model.NodeFactory.Create(3, 0, 0);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(0, 3, 0);

            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(0, 0, -4);

            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0.3, 84000000000);
            ICrossSection section  = new GenericCrossSection(0.02, 0.0001, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node1, node4, material, section);

            ForceVector force = model.ForceFactory.Create(-10000, -15000, 0, 0, 0, 0);

            model.ApplyForceToNode(force, node1);

            IFiniteElementSolver solver  = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);
            ReactionVector     node2Reaction     = results.GetReaction(node2);
            ReactionVector     node3Reaction     = results.GetReaction(node3);
            ReactionVector     node4Reaction     = results.GetReaction(node4);

            Console.WriteLine("\nNode1 displacement : \n" + node1Displacement);
            Console.WriteLine("\nNode2 reaction : \n" + node2Reaction);
            Console.WriteLine("\nNode3 reaction : \n" + node3Reaction);
            Console.WriteLine("\nNode4 reaction : \n" + node4Reaction);

            Assert.Inconclusive("The below x, y and zz pass, but z, xx, yy fail");
            Assert.AreEqual(-0.000007109, node1Displacement.X, 0.00000001);
            Assert.AreEqual(-0.000010680, node1Displacement.Y, 0.00000001);
            Assert.AreEqual(-0.000014704, node1Displacement.Z, 0.00000001);
            Assert.AreEqual(0.000001147, node1Displacement.XX, 0.00000001);
            Assert.AreEqual(-0.000001068, node1Displacement.YY, 0.00000001);
            Assert.AreEqual(0.000000595, node1Displacement.ZZ, 0.000000001);
        }
Example #17
0
        /// <summary>
        /// Puts the data into the results data structure.
        /// </summary>
        /// <param name="displacements">The calculated displacements.  The index of the values in the vector matches the index of the displacement identifiers.</param>
        /// <param name="reactions">The calculated reactions.  The index of the values in the vector matches the index of the reaction identifiers.</param>
        /// <returns>The results in a presentable data structure</returns>
        protected FiniteElementResults CreateResults(KeyedVector <NodalDegreeOfFreedom> displacements, KeyedVector <NodalDegreeOfFreedom> reactions)
        {
            Guard.AgainstNullArgument(displacements, "displacements");
            Guard.AgainstNullArgument(reactions, "reactions");

            FiniteElementResults results = new FiniteElementResults(this.model.ModelType);

            results.AddMultipleDisplacements(displacements);
            results.AddMultipleReactions(reactions);
            return(results);
        }
        public void At120Degrees()
        {
            Create2DSingleSpringModelAroundOrigin(-1, Math.Sqrt(3));
            FiniteElementResults results = SUT.Solve();

            Assert.IsNotNull(results);
            Assert.AreEqual(-5.774, results.GetReaction(node1).X, 0.001);
            Assert.AreEqual(10, results.GetReaction(node1).Z, 0.001);
            Assert.AreEqual(5.774, results.GetReaction(node2).X, 0.001);
            Assert.AreEqual((-4.0 / 3.0 / 100.0), results.GetDisplacement(node2).Z, 0.001);
            Assert.AreEqual(0, results.GetDisplacement(node2).X);
        }
        public void At135Degrees()
        {
            Create2DSingleSpringModelAroundOrigin(-1, 1);
            FiniteElementResults results = SUT.Solve();

            Assert.IsNotNull(results);
            Assert.AreEqual(-10, results.GetReaction(node1).X, 0.001);
            Assert.AreEqual(10, results.GetReaction(node1).Z, 0.001);
            Assert.AreEqual(10, results.GetReaction(node2).X, 0.001);
            Assert.AreEqual(-0.02, results.GetDisplacement(node2).Z, 0.001);
            Assert.AreEqual(0, results.GetDisplacement(node2).X, 0.001);
        }
Example #20
0
        public void SimplySupportedBeam()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0, 0, 0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0, 0);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);
            model.ConstrainNode(node2, DegreeOfFreedom.XX);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);

            ForceVector moment = model.ForceFactory.Create(0, 0, 0, 0, 10000, 0);

            model.ApplyForceToNode(moment, node1);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            // check the results
            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);

            Assert.AreEqual(0, displacementAtNode1.Z, 0.001);
            Assert.AreEqual(0.00007936, displacementAtNode1.YY, 0.000001);

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);

            Assert.AreEqual(0, displacementAtNode2.Z, 0.001);
            Assert.AreEqual(-0.00003968, displacementAtNode2.YY, 0.000001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);

            Assert.AreEqual(-10000, reactionAtNode1.Z, 0.001);
            Assert.AreEqual(0, reactionAtNode1.YY, 0.001);

            ReactionVector reactionAtNode2 = results.GetReaction(node2);

            Assert.AreEqual(10000, reactionAtNode2.Z, 0.001);
            Assert.AreEqual(0, reactionAtNode2.YY, 0.001);
        }
Example #21
0
        public DisplacementVector GetDisplacement(IFiniteElementNode node, FiniteElementResults results)
        {
            DisplacementVector disp = null;

            if (results.DisplacementVectorExists(node))
            {
                disp = results.GetDisplacement(node);
            }
            else
            {
                disp = new DisplacementVector(node, 0, 0);
            }
            return(disp);
        }
Example #22
0
        public void OneQuadMembraneLateralLoad()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Membrane2D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0.0, 0.0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0, 0.0);

            model.ConstrainNode(node2, DegreeOfFreedom.Y);

            FiniteElementNode node3 = model.NodeFactory.Create(1.0, 1.0);

            FiniteElementNode node4 = model.NodeFactory.Create(0.0, 1.0);

            IMaterial material = new GenericElasticMaterial(0, 210000000000, 0.3, 0);

            model.ElementFactory.CreateLinearConstantStressQuadrilateral(node1, node2, node3, node4, material, 0.1);

            ForceVector force = model.ForceFactory.Create(10000, 0);

            model.ApplyForceToNode(force, node4);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction1 = results.GetReaction(node1);
//			Console.WriteLine("\nReaction1 : \n" + reaction1);
            ReactionVector reaction2 = results.GetReaction(node2);

//			Console.WriteLine("\nReaction2 : \n" + reaction2);
            Assert.AreEqual(0, reaction1.Y + reaction2.Y, 1);
            Assert.AreEqual(-10000, reaction1.X, 1);

            DisplacementVector displacement3 = results.GetDisplacement(node3);
            DisplacementVector displacement4 = results.GetDisplacement(node4);

            Console.WriteLine("\nDisplacement3 : \n" + displacement3);
            Console.WriteLine("\nDisplacement4 : \n" + displacement4);

            Assert.AreEqual(0.000002619047, displacement3.X, 0.0000000001);
            Assert.AreEqual(-0.000001428571, displacement3.Y, 0.0000000001);

            Assert.AreEqual(0.000004047618, displacement4.X, 0.0000000001);
            Assert.AreEqual(0.000001428571, displacement4.Y, 0.0000000001);
        }
Example #23
0
        public void CalculateModelOfTwoBarsAndOneSpringWithFourDegreesOfFreedom()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss1D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);

            FiniteElementNode node2 = model.NodeFactory.Create(2.0);

            FiniteElementNode node3 = model.NodeFactory.Create(4.0);

            FiniteElementNode node4 = model.NodeFactory.Create(6.0);

            model.ConstrainNode(node4, DegreeOfFreedom.X);

            IMaterial     material = new GenericElasticMaterial(0, 70000000000, 0, 0);
            ICrossSection section  = new SolidRectangle(0.02, 0.01);

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section);
            model.ElementFactory.CreateLinearTruss(node2, node3, material, section);
            model.ElementFactory.CreateLinearConstantSpring(node3, node4, 2000000);


            ForceVector externalForce = model.ForceFactory.Create(8000);

            model.ApplyForceToNode(externalForce, node2);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);

            Assert.AreEqual(0.000935, displacementAtNode2.X, 0.001);

            DisplacementVector displacementAtNode3 = results.GetDisplacement(node3);

            Assert.AreEqual(0.000727, displacementAtNode3.X, 0.001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);

            Assert.AreEqual(-6546, reactionAtNode1.X, 1);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);

            Assert.AreEqual(-1455, reactionAtNode4.X, 1);
        }
Example #24
0
        public void CalculateModelOfThreeSpringsWithFourDegreesOfFreedom()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss1D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);

            FiniteElementNode node2 = model.NodeFactory.Create(1.0);

            FiniteElementNode node3 = model.NodeFactory.Create(2.0);

            model.ConstrainNode(node3, DegreeOfFreedom.X);

            FiniteElementNode node4 = model.NodeFactory.Create(2.00001);             ///TODO allow multiple nodes to be added in the same location

            model.ConstrainNode(node4, DegreeOfFreedom.X);

            model.ElementFactory.CreateLinearConstantSpring(node1, node2, 1);
            model.ElementFactory.CreateLinearConstantSpring(node2, node3, 1);
            model.ElementFactory.CreateLinearConstantSpring(node2, node4, 1);

            ForceVector externalForce = model.ForceFactory.Create(10);

            model.ApplyForceToNode(externalForce, node2);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);

            Assert.AreEqual(3.333, displacementAtNode2.X, 0.001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);

            Assert.AreEqual(-3.333, reactionAtNode1.X, 0.001);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);

            Assert.AreEqual(-3.333, reactionAtNode3.X, 0.001);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);

            Assert.AreEqual(-3.333, reactionAtNode4.X, 0.001);
        }
Example #25
0
        public void SimplySupportedBeam()                                        //TODO verify using independent check
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Beam1D); // we will create and analyze a 1D beam system
            FiniteElementNode  node1 = model.NodeFactory.Create(0);              // create a node at the origin

            model.ConstrainNode(node1, DegreeOfFreedom.Z);                       // constrain the node from moving in the Z-axis

            FiniteElementNode node2 = model.NodeFactory.Create(1.0);             // create a second node at a distance 1 metre along the X axis

            model.ConstrainNode(node2, DegreeOfFreedom.Z);                       // constrain the node from moving in the Z-axis

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 0);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section); // create a spring between the two nodes of a stiffness of 2000 Newtons per metre

            ForceVector moment = model.ForceFactory.CreateFor1DBeam(0, 10000);        // Create a clockwise(?) moment of 10 KiloNewtonmetres around the yy axis

            model.ApplyForceToNode(moment, node1);                                    // Apply that moment to the first node

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);    // Create a new instance of the solver class and pass it the model to solve
            FiniteElementResults results = solver.Solve();                            // ask the solver to solve the model and return results

            // check the results
            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);

            Assert.AreEqual(0, displacementAtNode1.Z, 0.001);
            Assert.AreEqual(0.00007936, displacementAtNode1.YY, 0.00000001);

            DisplacementVector displacementAtNode2 = results.GetDisplacement(node2);

            Assert.AreEqual(0, displacementAtNode2.Z, 0.001);
            Assert.AreEqual(-0.00003968, displacementAtNode2.YY, 0.00000001);

            ReactionVector reactionAtNode1 = results.GetReaction(node1);

            Assert.AreEqual(-10000, reactionAtNode1.Z, 0.001);
            Assert.AreEqual(0, reactionAtNode1.YY, 0.001);

            ReactionVector reactionAtNode2 = results.GetReaction(node2);

            Assert.AreEqual(10000, reactionAtNode2.Z, 0.001);
            Assert.AreEqual(0, reactionAtNode2.YY, 0.001);
        }
Example #26
0
        public void ThreeNodeCantilever()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(0, 0, 0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);
            model.ConstrainNode(node1, DegreeOfFreedom.YY);
            model.ConstrainNode(node1, DegreeOfFreedom.ZZ);

            FiniteElementNode node2 = model.NodeFactory.Create(1.5, 0, 0);
            FiniteElementNode node3 = model.NodeFactory.Create(3.0, 0, 0);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 84000000000);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2, node3, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, -10000, 0, 0, 0);

            model.ApplyForceToNode(force, node3);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reaction = results.GetReaction(node1);

            Assert.AreEqual(10000, reaction.Z, 0.001);
            Assert.AreEqual(-30000, reaction.YY, 0.001);

            DisplacementVector displacement2 = results.GetDisplacement(node2);

            Assert.AreEqual(-0.000670, displacement2.Z, 0.0005);
            Assert.AreEqual(0.000804, displacement2.YY, 0.0001);

            DisplacementVector displacement3 = results.GetDisplacement(node3);

            Assert.AreEqual(-0.00214, displacement3.Z, 0.0005);
            Assert.AreEqual(0.00107, displacement3.YY, 0.0001);
        }
Example #27
0
        public List <ElementResult> CalcElementResults(FiniteElementModel model, FiniteElementResults results)
        {
            List <ElementResult> output = new List <ElementResult>();

            //1. Calculate for frames
            foreach (var elem in model.Elements)
            {
                if (elem is LinearTruss)
                {
                    var truss    = elem as LinearTruss;
                    var startLoc = truss.StartNode.Location;
                    var endLoc   = truss.EndNode.Location;

                    var startDisp = GetDisplacement(truss.StartNode, results);
                    var endDisp   = GetDisplacement(truss.EndNode, results);

                    var dispStartLoc = new CartesianPoint(
                        truss.StartNode.X + startDisp.X,
                        truss.StartNode.Y + startDisp.Y,
                        truss.StartNode.Z + startDisp.Z);
                    var dispEndLoc = new CartesianPoint(
                        truss.EndNode.X + endDisp.X,
                        truss.EndNode.Y + endDisp.Y,
                        truss.EndNode.Z + endDisp.Z);

                    double initialDist  = Distance(startLoc, endLoc);
                    double deformedDist = Distance(dispStartLoc, dispEndLoc);

                    double dx         = deformedDist - initialDist;
                    var    axialForce = truss.Material.YoungsModulus * truss.CrossSection.Area * dx;

                    output.Add(new ElementResult()
                    {
                        AxialForce = axialForce
                    });
                }
            }

            return(output);
        }
Example #28
0
        public AnalysisResults AnalyzeModel(FiniteElementModel model)
        {
            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            AnalysisResults pixResults = new AnalysisResults();

            int i = 0;

            foreach (var node in model.Nodes)
            {
                DisplacementVector disp = GetDisplacement(node, results);

                pixResults.NodeResults.Add(i, new NodeResult()
                {
                    DispX = disp.X,
                    DispY = disp.Z
                });
                i++;
            }
            //CalcElementResults(model);

            return(pixResults);
        }
Example #29
0
        public void Calculate3DTrussOf4BarsAnd15Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss3D);

            FiniteElementNode node1 = model.NodeFactory.Create(4, 4, 3);

            FiniteElementNode node2 = model.NodeFactory.Create(0, 4, 0);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(0, 4, 6);

            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(4, 0, 3);

            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            FiniteElementNode node5 = model.NodeFactory.Create(8, -1, 1);

            model.ConstrainNode(node5, DegreeOfFreedom.X);
            model.ConstrainNode(node5, DegreeOfFreedom.Y);
            model.ConstrainNode(node5, DegreeOfFreedom.Z);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0, 0);
            ICrossSection section  = new SolidRectangle(0.01, 0.01);

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node3, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node4, material, section);
            model.ElementFactory.CreateLinearTruss(node1, node5, material, section);

            ForceVector externalForce = model.ForceFactory.Create(0, -10000, 0, 0, 0, 0);

            model.ApplyForceToNode(externalForce, node1);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reactionAtNode2 = results.GetReaction(node2);

            Assert.AreEqual(270.9, reactionAtNode2.X, 1);
            Assert.AreEqual(0, reactionAtNode2.Y, 1);
            Assert.AreEqual(203.2, reactionAtNode2.Z, 1);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);

            Assert.AreEqual(1354.6, reactionAtNode3.X, 1);
            Assert.AreEqual(0, reactionAtNode3.Y, 1);
            Assert.AreEqual(-1016, reactionAtNode3.Z, 1);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);

            Assert.AreEqual(0, reactionAtNode4.X, 1);
            Assert.AreEqual(7968.1, reactionAtNode4.Y, 1);
            Assert.AreEqual(0, reactionAtNode4.Z, 1);

            ReactionVector reactionAtNode5 = results.GetReaction(node5);

            Assert.AreEqual(-1625.5, reactionAtNode5.X, 1);
            Assert.AreEqual(2031.9, reactionAtNode5.Y, 1);
            Assert.AreEqual(812.8, reactionAtNode5.Z, 1);

            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);

            Assert.AreEqual(-0.0003024, displacementAtNode1.X, 0.0001);             //NOTE the results given in the book are 1E03
            Assert.AreEqual(-0.0015177, displacementAtNode1.Y, 0.0001);
            Assert.AreEqual(0.0002688, displacementAtNode1.Z, 0.0001);
        }
Example #30
0
        public void Calculate3DTrussOf3BarsAnd12Dof()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Truss3D);

            FiniteElementNode node1 = model.NodeFactory.Create(72, 0, 0);

            model.ConstrainNode(node1, DegreeOfFreedom.Y);

            FiniteElementNode node2 = model.NodeFactory.Create(0, 36, 0);

            model.ConstrainNode(node2, DegreeOfFreedom.X);
            model.ConstrainNode(node2, DegreeOfFreedom.Y);
            model.ConstrainNode(node2, DegreeOfFreedom.Z);

            FiniteElementNode node3 = model.NodeFactory.Create(0, 36, 72);

            model.ConstrainNode(node3, DegreeOfFreedom.X);
            model.ConstrainNode(node3, DegreeOfFreedom.Y);
            model.ConstrainNode(node3, DegreeOfFreedom.Z);

            FiniteElementNode node4 = model.NodeFactory.Create(0, 0, -48);

            model.ConstrainNode(node4, DegreeOfFreedom.X);
            model.ConstrainNode(node4, DegreeOfFreedom.Y);
            model.ConstrainNode(node4, DegreeOfFreedom.Z);

            IMaterial     material = new GenericElasticMaterial(0, 1200000, 0, 0);
            ICrossSection section1 = new SolidRectangle(1, 0.302);
            ICrossSection section2 = new SolidRectangle(1, 0.729);             ///NOTE example also refers to this as A1.  Assume errata in book
            ICrossSection section3 = new SolidRectangle(1, 0.187);             ///NOTE example also refers to this as A1.  Assume errata in book

            model.ElementFactory.CreateLinearTruss(node1, node2, material, section1);
            model.ElementFactory.CreateLinearTruss(node1, node3, material, section2);
            model.ElementFactory.CreateLinearTruss(node1, node4, material, section3);

            ForceVector externalForce = model.ForceFactory.Create(0, 0, -1000, 0, 0, 0);

            model.ApplyForceToNode(externalForce, node1);

            IFiniteElementSolver solver  = new MatrixInversionLinearSolver(model);
            FiniteElementResults results = solver.Solve();

            ReactionVector reactionAtNode1 = results.GetReaction(node1);

            Assert.AreEqual(0, reactionAtNode1.X, 1);
            Assert.AreEqual(-223.1632, reactionAtNode1.Y, 1);
            Assert.AreEqual(0, reactionAtNode1.Z, 1);

            ReactionVector reactionAtNode2 = results.GetReaction(node2);

            Assert.AreEqual(256.1226, reactionAtNode2.X, 1);
            Assert.AreEqual(-128.0613, reactionAtNode2.Y, 1);
            Assert.AreEqual(0, reactionAtNode2.Z, 1);

            ReactionVector reactionAtNode3 = results.GetReaction(node3);

            Assert.AreEqual(-702.4491, reactionAtNode3.X, 1);
            Assert.AreEqual(351.2245, reactionAtNode3.Y, 1);
            Assert.AreEqual(702.4491, reactionAtNode3.Z, 1);

            ReactionVector reactionAtNode4 = results.GetReaction(node4);

            Assert.AreEqual(446.3264, reactionAtNode4.X, 1);
            Assert.AreEqual(0, reactionAtNode4.Y, 1);
            Assert.AreEqual(297.5509, reactionAtNode4.Z, 1);

            DisplacementVector displacementAtNode1 = results.GetDisplacement(node1);

            Assert.AreEqual(-0.0711, displacementAtNode1.X, 0.0001);
            Assert.AreEqual(0, displacementAtNode1.Y, 0.0001);
            Assert.AreEqual(-0.2662, displacementAtNode1.Z, 0.0001);
        }
        public void PitchedRoofPortalFrame()
        {
            FiniteElementModel model = new FiniteElementModel(ModelType.Full3D);
            FiniteElementNode  node1 = model.NodeFactory.Create(-10, 0, 0);

            model.ConstrainNode(node1, DegreeOfFreedom.X);
            model.ConstrainNode(node1, DegreeOfFreedom.Z);
            model.ConstrainNode(node1, DegreeOfFreedom.Y);
            model.ConstrainNode(node1, DegreeOfFreedom.XX);

            FiniteElementNode node2 = model.NodeFactory.Create(-10, 0, 10);
            FiniteElementNode node3 = model.NodeFactory.Create(0, 0, 14);
            FiniteElementNode node4 = model.NodeFactory.Create(10, 0, 10);

            FiniteElementNode node5 = model.NodeFactory.Create(10, 0, 0);

            model.ConstrainNode(node5, DegreeOfFreedom.X);
            model.ConstrainNode(node5, DegreeOfFreedom.Z);
            model.ConstrainNode(node5, DegreeOfFreedom.Y);
            model.ConstrainNode(node5, DegreeOfFreedom.XX);

            IMaterial     material = new GenericElasticMaterial(0, 210000000000, 0.3, 84000000000);
            ICrossSection section  = new GenericCrossSection(0.0001, 0.0002, 0.0002, 0.00005);

            model.ElementFactory.CreateLinear3DBeam(node1, node2, material, section);
            model.ElementFactory.CreateLinear3DBeam(node2, node3, material, section);
            model.ElementFactory.CreateLinear3DBeam(node3, node4, material, section);
            model.ElementFactory.CreateLinear3DBeam(node4, node5, material, section);

            ForceVector force = model.ForceFactory.Create(0, 0, 10000, 0, 0, 0);

            model.ApplyForceToNode(force, node3);

            IFiniteElementSolver solver  = new LinearSolverSVD(model);
            FiniteElementResults results = solver.Solve();

            DisplacementVector node1Displacement = results.GetDisplacement(node1);
            DisplacementVector node2Displacement = results.GetDisplacement(node2);
            DisplacementVector node3Displacement = results.GetDisplacement(node3);
            DisplacementVector node4Displacement = results.GetDisplacement(node4);
            DisplacementVector node5Displacement = results.GetDisplacement(node5);
            ReactionVector     node1Reaction     = results.GetReaction(node1);
            ReactionVector     node5Reaction     = results.GetReaction(node5);

            Assert.AreEqual(0, node1Displacement.X, 0.0001);
            Assert.AreEqual(0, node1Displacement.Y, 0.0001);
            Assert.AreEqual(0, node1Displacement.Z, 0.0001);
            Assert.AreEqual(0.0010985, node1Displacement.YY, 0.0001);

            Assert.AreEqual(0.004027, node2Displacement.X, 0.0001);
            Assert.AreEqual(0, node2Displacement.Y, 0.0001);
            Assert.AreEqual(0.002381, node2Displacement.Z, 0.0001);
            Assert.AreEqual(-0.000996, node2Displacement.YY, 0.0001);

            Assert.AreEqual(0, node3Displacement.X, 0.0001);
            Assert.AreEqual(0, node3Displacement.Y, 0.0001);
            Assert.AreEqual(0.01723, node3Displacement.Z, 0.0001);
            Assert.AreEqual(0, node3Displacement.YY, 0.0001);

            Assert.AreEqual(-0.004027, node4Displacement.X, 0.0001);
            Assert.AreEqual(0, node4Displacement.Y, 0.0001);
            Assert.AreEqual(0.002381, node4Displacement.Z, 0.0001);
            Assert.AreEqual(0.000996, node4Displacement.YY, 0.0001);

            Assert.AreEqual(0, node5Displacement.X, 0.0001);
            Assert.AreEqual(0, node5Displacement.Y, 0.0001);
            Assert.AreEqual(0, node5Displacement.Z, 0.0001);
            Assert.AreEqual(-0.0010985, node5Displacement.YY, 0.0001);

            Assert.AreEqual(-5000, node1Reaction.Z, 1);
            Assert.AreEqual(-1759, node1Reaction.X, 1);
            Assert.AreEqual(0, node1Reaction.YY, 1);

            Assert.AreEqual(-5000, node5Reaction.Z, 1);
            Assert.AreEqual(1759, node5Reaction.X, 1);
            Assert.AreEqual(0, node5Reaction.YY, 1);
        }
Example #32
0
        /// <summary>
        /// Puts the data into the results data structure.
        /// </summary>
        /// <param name="displacements">The calculated displacements.  The index of the values in the vector matches the index of the displacement identifiers.</param>
        /// <param name="reactions">The calculated reactions.  The index of the values in the vector matches the index of the reaction identifiers.</param>
        /// <returns>The results in a presentable data structure</returns>
        protected FiniteElementResults CreateResults(KeyedVector<NodalDegreeOfFreedom> displacements, KeyedVector<NodalDegreeOfFreedom> reactions)
        {
            Guard.AgainstNullArgument(displacements, "displacements");
            Guard.AgainstNullArgument(reactions, "reactions");

            FiniteElementResults results = new FiniteElementResults(this.model.ModelType);
            results.AddMultipleDisplacements(displacements);
            results.AddMultipleReactions(reactions);
            return results;
        }