Example #1
0
        /// <summary>
        /// 要素境界を描画する
        /// </summary>
        /// <param name="g"></param>
        /// <param name="panel"></param>
        public void Draw(Graphics g, Size ofs, Size delta, Size regionSize, bool backFillFlg = false)
        {
            //const int vertexCnt = Constants.TriVertexCnt; //3; // 三角形の頂点の数(2次要素でも同じ)
            Constants.FemElementShapeDV elemShapeDv;
            int order;
            int vertexCnt;

            FemMeshLogic.GetElementShapeDvAndOrderByElemNodeCnt(this.NodeNumbers.Length, out elemShapeDv, out order, out vertexCnt);

            // 三角形(or 四角形)の頂点を取得
            Point[] points = new Point[vertexCnt];
            for (int ino = 0; ino < vertexCnt; ino++)
            {
                FemNode node = _Nodes[ino];
                System.Diagnostics.Debug.Assert(node.Coord.Length == 2);
                int x = (int)((double)node.Coord[0] * delta.Width);
                int y = (int)(regionSize.Height - (double)node.Coord[1] * delta.Height);
                points[ino] = new Point(x, y) + ofs;
            }
            // 三角形(or 四角形)を描画
            if (backFillFlg)
            {
                // 要素の背景を塗りつぶす
                using (Brush brush = new SolidBrush(BackColor))
                {
                    g.FillPolygon(brush, points);
                }
            }
            using (Pen selectedPen = new Pen(LineColor, 1))
            {
                // 境界線の描画
                //selectedPen.DashStyle = System.Drawing.Drawing2D.DashStyle.Dot;
                g.DrawPolygon(selectedPen, points);
            }
        }
Example #2
0
        /// <summary>
        /// ポート固有値解析
        /// </summary>
        public static void SolvePortWaveguideEigen(
            FemSolver.WaveModeDV WaveModeDv,
            double waveLength,
            int maxModeSpecified,
            IList <FemNode> Nodes,
            Dictionary <string, IList <int> > EdgeToElementNoH,
            IList <FemElement> Elements,
            MediaInfo[] Medias,
            Dictionary <int, bool> ForceNodeNumberH,
            IList <int> portNodes,
            out int[] nodesBoundary,
            out MyDoubleMatrix ryy_1d,
            out Complex[] eigenValues,
            out Complex[,] eigenVecs)
        {
            //System.Diagnostics.Debug.WriteLine("solvePortWaveguideEigen: {0},{1}", waveLength, portNo);
            nodesBoundary = null;
            ryy_1d        = null;
            eigenValues   = null;
            eigenVecs     = null;


            // 2D次元数
            const int ndim2d = Constants.CoordDim2D; //2;
            // 波数
            double k0 = 2.0 * pi / waveLength;
            // 角周波数
            double omega = k0 * c0;

            // 節点番号リスト(要素インデックス: 1D節点番号 - 1 要素:2D節点番号)
            IList <int> nodes = portNodes;
            // 2D→1D節点番号マップ
            Dictionary <int, int> to1dNodes = new Dictionary <int, int>();
            // 節点座標リスト
            IList <double> coords = new List <double>();
            // 要素リスト
            IList <FemLineElement> elements = new List <FemLineElement>();
            // 1D節点番号リスト(ソート済み)
            IList <int> sortedNodes = new List <int>();
            // 1D節点番号→ソート済みリストインデックスのマップ
            Dictionary <int, int> toSorted = new Dictionary <int, int>();

            // 2Dの要素から次数を取得する
            Constants.FemElementShapeDV elemShapeDv2d;
            int order;
            int vertexCnt2d;

            FemMeshLogic.GetElementShapeDvAndOrderByElemNodeCnt(Elements[0].NodeNumbers.Length, out elemShapeDv2d, out order, out vertexCnt2d);

            // 2D→1D節点番号マップ作成
            for (int i = 0; i < nodes.Count; i++)
            {
                int nodeNumber2d = nodes[i];
                if (!to1dNodes.ContainsKey(nodeNumber2d))
                {
                    to1dNodes.Add(nodeNumber2d, i + 1);
                }
            }
            // 原点
            int     nodeNumber0 = nodes[0];
            int     nodeIndex0  = nodeNumber0 - 1;
            FemNode node0       = Nodes[nodeIndex0];

            double[] coord0 = new double[ndim2d];
            coord0[0] = node0.Coord[0];
            coord0[1] = node0.Coord[1];
            // 座標リスト作成
            double[] coord = new double[ndim2d];
            foreach (int nodeNumber in nodes)
            {
                int     nodeIndex = nodeNumber - 1;
                FemNode node      = Nodes[nodeIndex];
                coord[0] = node.Coord[0];
                coord[1] = node.Coord[1];
                double x = FemMeshLogic.GetDistance(coord, coord0);
                //System.Diagnostics.Debug.WriteLine("{0},{1},{2},{3}", nodeIndex, coord[0], coord[1], x);
                coords.Add(x);
            }

            // 線要素を作成する
            if (order == Constants.FirstOrder)
            {
                // 1次線要素
                FemMat_Line_First.MkElements(
                    nodes,
                    EdgeToElementNoH,
                    Elements,
                    ref elements);
            }
            else
            {
                // 2次線要素
                FemMat_Line_Second.MkElements(
                    nodes,
                    EdgeToElementNoH,
                    Elements,
                    ref elements);
            }

            // 強制境界節点と内部領域節点を分離
            foreach (int nodeNumber2d in nodes)
            {
                int nodeNumber = to1dNodes[nodeNumber2d];
                if (ForceNodeNumberH.ContainsKey(nodeNumber2d))
                {
                    System.Diagnostics.Debug.WriteLine("{0}:    {1}    {2}", nodeNumber, Nodes[nodeNumber2d - 1].Coord[0], Nodes[nodeNumber2d - 1].Coord[1]);
                }
                else
                {
                    sortedNodes.Add(nodeNumber);
                    toSorted.Add(nodeNumber, sortedNodes.Count - 1);
                }
            }
            // 対称バンド行列のパラメータを取得する
            int rowcolSize   = 0;
            int subdiaSize   = 0;
            int superdiaSize = 0;

            {
                bool[,] matPattern = null;
                GetMatNonzeroPatternForEigen(elements, toSorted, out matPattern);
                GetBandMatrixSubDiaSizeAndSuperDiaSizeForEigen(matPattern, out rowcolSize, out subdiaSize, out superdiaSize);
            }
            // ソート済み1D節点インデックス→2D節点番号マップ
            nodesBoundary = new int[sortedNodes.Count];
            for (int i = 0; i < sortedNodes.Count; i++)
            {
                int nodeNumber   = sortedNodes[i];
                int nodeIndex    = nodeNumber - 1;
                int nodeNumber2d = nodes[nodeIndex];
                nodesBoundary[i] = nodeNumber2d;
            }

            // 節点数
            int nodeCnt = sortedNodes.Count;
            // 固有値、固有ベクトル
            int maxMode = maxModeSpecified;

            if (maxMode > nodeCnt)
            {
                maxMode = nodeCnt;
            }
            eigenValues = new Complex[maxMode];
            eigenVecs   = new Complex[maxMode, nodeCnt];
            // 固有モード解析でのみ使用するuzz_1d, txx_1d
            MyDoubleMatrix txx_1d = new MyDoubleSymmetricBandMatrix(nodeCnt, subdiaSize, superdiaSize);
            MyDoubleMatrix uzz_1d = new MyDoubleSymmetricBandMatrix(nodeCnt, subdiaSize, superdiaSize);

            // ryy_1dマトリクス (線要素)
            ryy_1d = new MyDoubleSymmetricBandMatrix(nodeCnt, subdiaSize, superdiaSize);

            for (int elemIndex = 0; elemIndex < elements.Count; elemIndex++)
            {
                // 線要素
                FemLineElement element = elements[elemIndex];

                // 1Dヘルムホルツ方程式固有値問題の要素行列を加算する
                if (order == Constants.FirstOrder)
                {
                    // 1次線要素
                    FemMat_Line_First.AddElementMatOf1dEigenValueProblem(
                        waveLength, // E面の場合のみ使用
                        element,
                        coords,
                        toSorted,
                        Medias,
                        WaveModeDv,
                        ref txx_1d, ref ryy_1d, ref uzz_1d);
                }
                else
                {
                    // 2次線要素
                    FemMat_Line_Second.AddElementMatOf1dEigenValueProblem(
                        waveLength, // E面の場合のみ使用
                        element,
                        coords,
                        toSorted,
                        Medias,
                        WaveModeDv,
                        ref txx_1d, ref ryy_1d, ref uzz_1d);
                }
            }

            // [A] = [Txx] - k0 * k0 *[Uzz]
            //メモリ節約
            //MyDoubleMatrix matA = new MyDoubleMatrix(nodeCnt, nodeCnt);
            MyDoubleSymmetricBandMatrix matA = new MyDoubleSymmetricBandMatrix(nodeCnt, subdiaSize, superdiaSize);

            for (int ino = 0; ino < nodeCnt; ino++)
            {
                for (int jno = 0; jno < nodeCnt; jno++)
                {
                    // 対称バンド行列対応
                    if (matA is MyDoubleSymmetricBandMatrix && ino > jno)
                    {
                        continue;
                    }
                    // 剛性行列
                    //matA[ino, jno] = txx_1d[ino, jno] - (k0 * k0) * uzz_1d[ino, jno];
                    //  質量行列matBが正定値行列となるように剛性行列matAの方の符号を反転する
                    matA[ino, jno] = -(txx_1d[ino, jno] - (k0 * k0) * uzz_1d[ino, jno]);
                }
            }

            // ( [txx] - k0^2[uzz] + β^2[ryy]){Ez} = {0}より
            // [A]{x} = λ[B]{x}としたとき、λ = β^2 とすると[B] = -[ryy]
            //MyDoubleMatrix matB = MyMatrixUtil.product(-1.0, ryy_1d);
            // 質量行列が正定値となるようにするため、上記符号反転を剛性行列の方に反映し、質量行列はryy_1dをそのまま使用する
            //MyDoubleMatrix matB = new MyDoubleMatrix(ryy_1d);
            MyDoubleSymmetricBandMatrix matB = new MyDoubleSymmetricBandMatrix((MyDoubleSymmetricBandMatrix)ryy_1d);

            // 一般化固有値問題を解く
            Complex[] evals = null;
            Complex[,] evecs = null;
            try
            {
                // 固有値、固有ベクトルを求める
                solveEigen(matA, matB, out evals, out evecs);
                // 固有値のソート
                Sort1DEigenMode(k0, evals, evecs);
            }
            catch (Exception exception)
            {
                System.Diagnostics.Debug.WriteLine(exception.Message + " " + exception.StackTrace);
                System.Diagnostics.Debug.Assert(false);
            }
            for (int imode = 0; imode < evecs.GetLength(0); imode++)
            {
                KrdLab.clapack.Complex phaseShift = 1.0;
                double maxAbs = double.MinValue;
                KrdLab.clapack.Complex fValueAtMaxAbs = 0.0;
                {
                    // 境界上で位相調整する
                    for (int ino = 0; ino < evecs.GetLength(1); ino++)
                    {
                        KrdLab.clapack.Complex cvalue = evecs[imode, ino];
                        double abs = KrdLab.clapack.Complex.Abs(cvalue);
                        if (abs > maxAbs)
                        {
                            maxAbs         = abs;
                            fValueAtMaxAbs = cvalue;
                        }
                    }
                }
                if (maxAbs >= MyUtilLib.Matrix.Constants.PrecisionLowerLimit)
                {
                    phaseShift = fValueAtMaxAbs / maxAbs;
                }
                //System.Diagnostics.Debug.WriteLine("phaseShift: {0} (°)", Math.Atan2(phaseShift.Imaginary, phaseShift.Real) * 180.0 / pi);
                for (int ino = 0; ino < evecs.GetLength(1); ino++)
                {
                    evecs[imode, ino] /= phaseShift;
                }
            }

            for (int imode = 0; imode < maxMode; imode++)
            {
                eigenValues[imode] = 0;
            }
            for (int tagtModeIdx = evals.Length - 1, imode = 0; tagtModeIdx >= 0 && imode < maxMode; tagtModeIdx--)
            {
                // 伝搬定数は固有値のsqrt
                Complex betam = Complex.Sqrt(evals[tagtModeIdx]);
                // 定式化BUGFIX
                //   減衰定数は符号がマイナス(β = -jα)
                bool isConjugateMode = false;
                if (betam.Imaginary >= 0.0)
                {
                    betam           = new Complex(betam.Real, -betam.Imaginary);
                    isConjugateMode = true;
                }
                // 固有ベクトル
                Complex[] evec = MyMatrixUtil.matrix_GetRowVec(evecs, tagtModeIdx);
                if (isConjugateMode)
                {
                    evec = MyMatrixUtil.vector_Conjugate(evec);
                }
                // 規格化定数を求める
                // 実数の場合 [ryy]*t = [ryy]t ryyは対称行列より[ryy]t = [ryy]
                Complex[] workVec = MyMatrixUtil.product(ryy_1d, evec);
                Complex   dm      = MyMatrixUtil.vector_Dot(MyMatrixUtil.vector_Conjugate(evec), workVec);
                {
                    // H面、平行平板
                    if (WaveModeDv == FemSolver.WaveModeDV.TM)
                    {
                        dm = Complex.Sqrt(omega * eps0 / Complex.Abs(betam) / dm);
                    }
                    else
                    {
                        dm = Complex.Sqrt(omega * mu0 / Complex.Abs(betam) / dm);
                    }
                }
                //System.Diagnostics.Debug.WriteLine("dm = " + dm);

                // 伝搬定数の格納
                eigenValues[imode] = betam;
                // check
                if (imode < 5)
                {
                    //System.Diagnostics.Debug.WriteLine("eigenValues [ " + imode + "] = " + betam.Real + " + " + betam.Imaginary + " i " + " tagtModeIdx :" + tagtModeIdx + " " );
                    System.Diagnostics.Debug.WriteLine("β/k0 [ " + imode + "] = " + betam.Real / k0 + " + " + betam.Imaginary / k0 + " i " + " tagtModeIdx :" + tagtModeIdx + " ");
                }
                // 固有ベクトルの格納(規格化定数を掛ける)
                for (int inoSorted = 0; inoSorted < nodeCnt; inoSorted++)
                {
                    Complex fm = dm * evec[inoSorted];
                    eigenVecs[imode, inoSorted] = fm;
                    //System.Diagnostics.Debug.WriteLine("eigenVecs [ " + imode + ", " + inoSorted + "] = " + fm.Real + " + " + fm.Imaginary + " i  Abs:" + Complex.Abs(fm));
                }
                imode++;
            }
        }
Example #3
0
        /// <summary>
        ///  Fem入力データをファイルから読み込み
        /// </summary>
        /// <param name="filename">ファイル名(*.fem)</param>
        /// <param name="nodes">節点リスト</param>
        /// <param name="elements">要素リスト</param>
        /// <param name="ports">ポートの節点番号リストのリスト</param>
        /// <param name="forceBCNodes">強制境界節点番号リスト</param>
        /// <param name="incidentPortNo">入射ポート番号</param>
        /// <param name="medias">媒質情報リスト</param>
        /// <param name="firstWaveLength">計算開始波長</param>
        /// <param name="lastWaveLength">計算終了波長</param>
        /// <param name="calcCnt">計算件数</param>
        /// <param name="wgStructureDv">導波路構造区分</param>
        /// <param name="waveModeDv">波のモード区分</param>
        /// <returns></returns>
        public static bool LoadFromFile(
            string filename,
            out IList <FemNode> nodes,
            out IList <FemElement> elements,
            out IList <IList <int> > ports,
            out IList <int> forceBCNodes,
            out IList <IList <uint> > elemNoPeriodicList,
            out IList <IList <IList <int> > > nodePeriodicBList,
            out IList <IList <int> > defectNodePeriodicList,
            out int incidentPortNo,
            out MediaInfo[] medias,
            out double firstWaveLength,
            out double lastWaveLength,
            out int calcCnt,
            out FemSolver.WaveModeDV waveModeDv
            )
        {
            int eNodeCnt = 0;

            nodes                  = new List <FemNode>();
            elements               = new List <FemElement>();
            ports                  = new List <IList <int> >();
            forceBCNodes           = new List <int>();
            elemNoPeriodicList     = new List <IList <uint> >();
            nodePeriodicBList      = new List <IList <IList <int> > >();
            defectNodePeriodicList = new List <IList <int> >();
            incidentPortNo         = 1;
            medias                 = new MediaInfo[Constants.MaxMediaCount];
            Color[] workColorList = { CadLogic.VacumnBackColor, CadLogic.RodBackColor };
            for (int i = 0; i < medias.Length; i++)
            {
                MediaInfo media = new MediaInfo();
                media.BackColor = workColorList[i];
                medias[i]       = media;
            }
            firstWaveLength = 0.0;
            lastWaveLength  = 0.0;
            calcCnt         = 0;
            waveModeDv      = Constants.DefWaveModeDv;

            if (!File.Exists(filename))
            {
                return(false);
            }

            // 入力データ読み込み
            try
            {
                using (StreamReader sr = new StreamReader(filename))
                {
                    const char delimiter = ',';
                    string     line;
                    string[]   tokens;

                    line   = sr.ReadLine();
                    tokens = line.Split(delimiter);
                    if (tokens.Length != 2 || tokens[0] != "Nodes")
                    {
                        MessageBox.Show("節点情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return(false);
                    }
                    int nodeCnt = int.Parse(tokens[1]);
                    for (int i = 0; i < nodeCnt; i++)
                    {
                        line   = sr.ReadLine();
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 3)
                        {
                            MessageBox.Show("節点情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        int no = int.Parse(tokens[0]);
                        if (no != i + 1)
                        {
                            MessageBox.Show("節点番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        FemNode femNode = new FemNode();
                        femNode.No       = no;
                        femNode.Coord    = new double[2];
                        femNode.Coord[0] = double.Parse(tokens[1]);
                        femNode.Coord[1] = double.Parse(tokens[2]);
                        nodes.Add(femNode);
                    }

                    line   = sr.ReadLine();
                    tokens = line.Split(delimiter);
                    if (tokens.Length != 2 || tokens[0] != "Elements")
                    {
                        MessageBox.Show("要素情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return(false);
                    }
                    int elementCnt = int.Parse(tokens[1]);
                    for (int i = 0; i < elementCnt; i++)
                    {
                        line   = sr.ReadLine();
                        tokens = line.Split(delimiter);
                        if ((tokens.Length != 1 + Constants.TriNodeCnt_SecondOrder) &&
                            (tokens.Length != 2 + Constants.TriNodeCnt_SecondOrder) &&  // ver1.1.0.0で媒質インデックスを番号の後に挿入
                            (tokens.Length != 2 + Constants.TriNodeCnt_FirstOrder)
                            )
                        {
                            MessageBox.Show("要素情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        int elemNo       = int.Parse(tokens[0]);
                        int mediaIndex   = 0;
                        int indexOffset  = 1; // ver1.0.0.0
                        int workENodeCnt = Constants.TriNodeCnt_SecondOrder;
                        if (tokens.Length == 1 + Constants.TriNodeCnt_SecondOrder)
                        {
                            // 媒質インデックスのない古い形式(ver1.0.0.0)
                        }
                        else
                        {
                            // ver1.1.0.0で媒質インデックスを追加
                            mediaIndex  = int.Parse(tokens[1]);
                            indexOffset = 2;

                            workENodeCnt = tokens.Length - 2;
                        }
                        if (workENodeCnt <= 0)
                        {
                            MessageBox.Show("要素節点数が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        if (eNodeCnt == 0)
                        {
                            // 最初の要素の節点数を格納(チェックに利用)
                            eNodeCnt = workENodeCnt;
                        }
                        else
                        {
                            // 要素の節点数が変わった?
                            if (workENodeCnt != eNodeCnt)
                            {
                                MessageBox.Show("要素節点数が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                                return(false);
                            }
                        }
                        //FemElement femElement = new FemElement();
                        FemElement femElement = FemMeshLogic.CreateFemElementByElementNodeCnt(eNodeCnt);
                        femElement.No          = elemNo;
                        femElement.MediaIndex  = mediaIndex;
                        femElement.NodeNumbers = new int[eNodeCnt];
                        for (int n = 0; n < femElement.NodeNumbers.Length; n++)
                        {
                            femElement.NodeNumbers[n] = int.Parse(tokens[n + indexOffset]);
                        }
                        elements.Add(femElement);
                    }

                    line   = sr.ReadLine();
                    tokens = line.Split(delimiter);
                    if (tokens.Length != 2 || tokens[0] != "Ports")
                    {
                        MessageBox.Show("入出力ポート情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return(false);
                    }
                    int portCnt = int.Parse(tokens[1]);
                    for (int i = 0; i < portCnt; i++)
                    {
                        line   = sr.ReadLine();
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 2)
                        {
                            MessageBox.Show("入出力ポート情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        int portNo      = int.Parse(tokens[0]);
                        int portNodeCnt = int.Parse(tokens[1]);
                        if (portNo != i + 1)
                        {
                            MessageBox.Show("ポート番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        IList <int> portNodes = new List <int>();
                        for (int n = 0; n < portNodeCnt; n++)
                        {
                            line   = sr.ReadLine();
                            tokens = line.Split(delimiter);
                            if (tokens.Length != 2)
                            {
                                MessageBox.Show("ポートの節点情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                                return(false);
                            }
                            int portNodeNumber = int.Parse(tokens[0]);
                            int nodeNumber     = int.Parse(tokens[1]);
                            if (portNodeNumber != n + 1)
                            {
                                MessageBox.Show("ポートの節点番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                                return(false);
                            }
                            portNodes.Add(nodeNumber);
                        }
                        ports.Add(portNodes);
                    }

                    line   = sr.ReadLine();
                    tokens = line.Split(delimiter);
                    if (tokens.Length != 2 || tokens[0] != "Force")
                    {
                        MessageBox.Show("強制境界情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return(false);
                    }
                    int forceNodeCnt = int.Parse(tokens[1]);
                    for (int i = 0; i < forceNodeCnt; i++)
                    {
                        line = sr.ReadLine();
                        int nodeNumber = int.Parse(line);
                        forceBCNodes.Add(nodeNumber);
                    }

                    // 周期構造領域内要素番号
                    for (int portIndex = 0; portIndex < portCnt; portIndex++)
                    {
                        line   = sr.ReadLine();
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 3 || tokens[0] != "elemNoPeriodic")
                        {
                            MessageBox.Show("周期構造領域要素情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        int tmpIndex = int.Parse(tokens[1]);
                        System.Diagnostics.Debug.Assert(tmpIndex == portIndex);
                        int          cnt            = int.Parse(tokens[2]);
                        IList <uint> elemNoPeriodic = new List <uint>();
                        for (int i = 0; i < cnt; i++)
                        {
                            line   = sr.ReadLine();
                            tokens = line.Split(delimiter);
                            if (tokens.Length != 1)
                            {
                                MessageBox.Show("周期構造領域要素番号情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                                return(false);
                            }
                            uint elemNo = uint.Parse(tokens[0]);
                            elemNoPeriodic.Add(elemNo);
                        }
                        elemNoPeriodicList.Add(elemNoPeriodic);
                    }

                    // 周期構造境界節点番号
                    for (int portIndex = 0; portIndex < portCnt; portIndex++)
                    {
                        IList <IList <int> > nodePeriodicB = new List <IList <int> >();
                        for (int boundaryIndex = 0; boundaryIndex < 2; boundaryIndex++)
                        {
                            line   = sr.ReadLine();
                            tokens = line.Split(delimiter);
                            if (tokens.Length != 4 || tokens[0] != "nodePeriodicB")
                            {
                                MessageBox.Show("周期構造境界節点番号情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                                return(false);
                            }
                            int tmpIndex1 = int.Parse(tokens[1]);
                            System.Diagnostics.Debug.Assert(tmpIndex1 == portIndex);
                            int tmpIndex2 = int.Parse(tokens[2]);
                            System.Diagnostics.Debug.Assert(tmpIndex2 == boundaryIndex);
                            int         cnt        = int.Parse(tokens[3]);
                            IList <int> workNodesB = new List <int>();
                            for (int i = 0; i < cnt; i++)
                            {
                                line   = sr.ReadLine();
                                tokens = line.Split(delimiter);
                                if (tokens.Length != 1)
                                {
                                    MessageBox.Show("周期構造境界節点番号情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                                    return(false);
                                }
                                int nodeNumber = int.Parse(tokens[0]);
                                workNodesB.Add(nodeNumber);
                            }
                            nodePeriodicB.Add(workNodesB);
                        }
                        nodePeriodicBList.Add(nodePeriodicB);
                    }


                    // 周期構造領域内要素番号
                    for (int portIndex = 0; portIndex < portCnt; portIndex++)
                    {
                        line   = sr.ReadLine();
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 3 || tokens[0] != "defectNodePeriodic")
                        {
                            MessageBox.Show("周期構造領域欠陥部節点情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        int tmpIndex = int.Parse(tokens[1]);
                        System.Diagnostics.Debug.Assert(tmpIndex == portIndex);
                        int         cnt = int.Parse(tokens[2]);
                        IList <int> defectNodePeriodic = new List <int>();
                        for (int i = 0; i < cnt; i++)
                        {
                            line   = sr.ReadLine();
                            tokens = line.Split(delimiter);
                            if (tokens.Length != 1)
                            {
                                MessageBox.Show("周期構造領域欠陥部節点番号情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                                return(false);
                            }
                            int nodeNumber = int.Parse(tokens[0]);
                            defectNodePeriodic.Add(nodeNumber);
                        }
                        defectNodePeriodicList.Add(defectNodePeriodic);
                    }

                    line   = sr.ReadLine();
                    tokens = line.Split(delimiter);
                    if (tokens.Length != 2 || tokens[0] != "IncidentPortNo")
                    {
                        MessageBox.Show("入射ポート番号がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return(false);
                    }
                    incidentPortNo = int.Parse(tokens[1]);

                    line = sr.ReadLine();
                    if (line == null || line.Length == 0)
                    {
                        // 媒質情報なし
                    }
                    else
                    {
                        // 媒質情報?
                        tokens = line.Split(delimiter);
                        if (tokens[0] != "Medias")
                        {
                            MessageBox.Show("媒質情報がありません");
                            return(false);
                        }
                        int cnt = int.Parse(tokens[1]);
                        if (cnt > Constants.MaxMediaCount)
                        {
                            MessageBox.Show("媒質情報の個数が不正です");
                            return(false);
                        }
                        for (int i = 0; i < cnt; i++)
                        {
                            line = sr.ReadLine();
                            if (line.Length == 0)
                            {
                                MessageBox.Show("媒質情報が不正です");
                                return(false);
                            }
                            tokens = line.Split(delimiter);
                            if (tokens.Length != 1 + 9 + 9)
                            {
                                MessageBox.Show("媒質情報が不正です");
                                return(false);
                            }
                            int mediaIndex = int.Parse(tokens[0]);
                            System.Diagnostics.Debug.Assert(mediaIndex == i);

                            double[,] p = new double[3, 3];
                            for (int m = 0; m < p.GetLength(0); m++)
                            {
                                for (int n = 0; n < p.GetLength(1); n++)
                                {
                                    p[m, n] = double.Parse(tokens[1 + m * p.GetLength(1) + n]);
                                }
                            }
                            medias[i].SetP(p);

                            double[,] q = new double[3, 3];
                            for (int m = 0; m < q.GetLength(0); m++)
                            {
                                for (int n = 0; n < q.GetLength(1); n++)
                                {
                                    q[m, n] = double.Parse(tokens[1 + 9 + m * q.GetLength(1) + n]);
                                }
                            }
                            medias[i].SetQ(q);
                        }
                    }
                    line = sr.ReadLine();
                    if (line == null || line.Length == 0)
                    {
                    }
                    else
                    {
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 4 || tokens[0] != "WaveLengthRange")
                        {
                            MessageBox.Show("計算対象周波数情報がありません");
                            return(false);
                        }
                        firstWaveLength = double.Parse(tokens[1]);
                        lastWaveLength  = double.Parse(tokens[2]);
                        calcCnt         = int.Parse(tokens[3]);
                    }
                    line = sr.ReadLine();
                    if (line == null || line.Length == 0)
                    {
                    }
                    else
                    {
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 2 || tokens[0] != "WaveModeDv")
                        {
                            MessageBox.Show("計算対象モード区分情報がありません");
                            return(false);
                        }
                        if (tokens[1] == "TE")
                        {
                            waveModeDv = FemSolver.WaveModeDV.TE;
                        }
                        else if (tokens[1] == "TM")
                        {
                            waveModeDv = FemSolver.WaveModeDV.TM;
                        }
                        else
                        {
                            MessageBox.Show("計算対象モード区分情報が不正です");
                            return(false);
                        }
                    }
                }
            }
            catch (Exception exception)
            {
                System.Diagnostics.Debug.WriteLine(exception.Message + " " + exception.StackTrace);
                MessageBox.Show(exception.Message, "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                return(false);
            }

            return(true);
        }
        /* 数値積分版
         * /// <summary>
         * /// ヘルムホルツ方程式に対する有限要素マトリクス作成
         * /// </summary>
         * /// <param name="waveLength">波長</param>
         * /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param>
         * /// <param name="element">有限要素</param>
         * /// <param name="Nodes">節点リスト</param>
         * /// <param name="Medias">媒質リスト</param>
         * /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param>
         * /// <param name="WaveModeDv">計算する波のモード区分</param>
         * /// <param name="mat">マージされる全体行列</param>
         * public static  void AddElementMat(double waveLength,
         *  Dictionary<int, int> toSorted,
         *  FemElement element,
         *  IList<FemNode> Nodes,
         *  MediaInfo[] Medias,
         *  Dictionary<int, bool> ForceNodeNumberH,
         *  FemSolver.WaveModeDv WaveModeDv,
         *  ref MyComplexMatrix mat)
         * {
         *  // 定数
         *  const double pi = Constants.pi;
         *  const double c0 = Constants.c0;
         *  // 波数
         *  double k0 = 2.0 * pi / waveLength;
         *  // 角周波数
         *  double omega = k0 * c0;
         *
         *  // 要素頂点数
         *  const int vertexCnt = Constants.QuadVertexCnt; //4;
         *  // 要素内節点数
         *  const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8;  // 2次セレンディピティ
         *  // 座標次元数
         *  const int ndim = Constants.CoordDim2D; //2;
         *
         *  int[] nodeNumbers = element.NodeNumbers;
         *  int[] no_c = new int[nno];
         *  MediaInfo media = Medias[element.MediaIndex];
         *  double[,] media_P = null;
         *  double[,] media_Q = null;
         *  if (WaveModeDv == FemSolver.WaveModeDv.TE)
         *  {
         *      media_P = media.P;
         *      media_Q = media.Q;
         *  }
         *  else if (WaveModeDv == FemSolver.WaveModeDv.TM)
         *  {
         *      media_P = media.Q;
         *      media_Q = media.P;
         *  }
         *  else
         *  {
         *      System.Diagnostics.Debug.Assert(false);
         *  }
         *  // [p]は逆数をとる
         *  media_P = MyMatrixUtil.matrix_Inverse(media_P);
         *
         *  // 節点座標(IFの都合上配列の配列形式の2次元配列を作成)
         *  double[][] pp = new double[nno][];
         *  for (int ino = 0; ino < nno; ino++)
         *  {
         *      int nodeNumber = nodeNumbers[ino];
         *      int nodeIndex = nodeNumber - 1;
         *      FemNode node = Nodes[nodeIndex];
         *
         *      no_c[ino] = nodeNumber;
         *      pp[ino] = new double[ndim];
         *      for (int n = 0; n < ndim; n++)
         *      {
         *          pp[ino][n] = node.Coord[n];
         *      }
         *  }
         *
         *  //// 四角形の辺の長さを求める
         *  //double[] le = new double[4];
         *  //le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]);
         *  //le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]);
         *  //le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]);
         *  //le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]);
         *
         *  // 要素節点座標( 局所r,s成分 )
         *  //        s
         *  //        |
         *  //    3+  6  +2
         *  //    |   |   |
         *  // ---7---+---5-->r
         *  //    |   |   |
         *  //    0+  4  +1
         *  //        |
         *  //
         *  double[][] n_pts =
         *      {
         *          // r, s
         *          new double[] {-1.0, -1.0},  //0
         *          new double[] { 1.0, -1.0},  //1
         *          new double[] { 1.0,  1.0},  //2
         *          new double[] {-1.0,  1.0},  //3
         *          new double[] {   0, -1.0},  //4
         *          new double[] { 1.0,    0},  //5
         *          new double[] {   0,  1.0},  //6
         *          new double[] {-1.0,    0},  //7
         *      };
         *
         *
         *  // ガウスルジャンドルの積分公式
         *  double[][] g_pts = new double[5][]
         *      {
         *          // ポイント(ξ: [-1 +1]区間)、重み
         *          new double[] { -0.90617985, 0.23692689},
         *          new double[] { -0.53846931, 0.47862867},
         *          new double[] {0.0, 0.56888889},
         *          new double[] {0.53846931, 0.47862867},
         *          new double[] {0.90617985, 0.23692689}
         *      };
         *
         *  // 要素剛性行列を作る
         *  double[,] emat = new Complex[nno, nno];
         *  for (int ino = 0; ino < nno; ino++)
         *  {
         *      for (int jno = 0; jno < nno; jno++)
         *      {
         *          emat[ino, jno] = 0.0;
         *          double detjsum = 0; //check
         *          foreach (double[] s_g_pt in g_pts)
         *          {
         *              foreach (double[] r_g_pt in g_pts)
         *              {
         *                  // 積分点
         *                  double r = r_g_pt[0];
         *                  double s = s_g_pt[0];
         *                  // 重み(2次元)
         *                  double weight = r_g_pt[1] * s_g_pt[1];
         *                  // 形状関数
         *                  double[] N = new double[nno];
         *                  // 形状関数のr, s方向微分
         *                  double[] dNdr = new double[nno];
         *                  double[] dNds = new double[nno];
         *                  // 節点0~3 : 四角形の頂点
         *                  for (int i = 0; i < 4; i++)
         *                  {
         *                      // 節点の局所座標
         *                      double ri = n_pts[i][0];
         *                      double si = n_pts[i][1];
         *                      // 形状関数N
         *                      N[i] = 0.25 * (1.0 + ri * r) * (1.0 + si * s) * (ri* r + si * s - 1.0);
         *                      // 形状関数のr方向微分
         *                      dNdr[i] = 0.25 * ri * (1.0 + si * s) * (2.0 * ri * r + si * s);
         *                      // 形状関数のs方向微分
         *                      dNds[i] = 0.25 * si * (1.0 + ri * r) * (ri * r + 2.0 * si * s);
         *                  }
         *                  // 節点4,6 : r方向辺上中点
         *                  foreach (int i in new int[]{ 4, 6})
         *                  {
         *                      // 節点の局所座標
         *                      double ri = n_pts[i][0];
         *                      double si = n_pts[i][1];
         *                      // 形状関数N
         *                      N[i] = 0.5 * (1.0 - r * r) * (1.0 + si * s);
         *                      // 形状関数のr方向微分
         *                      dNdr[i] = -1.0 * r * (1.0 + si * s);
         *                      // 形状関数のs方向微分
         *                      dNds[i] = 0.5 * si * (1.0 - r * r);
         *                  }
         *                  // 節点5,7 : s方向辺上中点
         *                  foreach (int i in new int[] { 5, 7 })
         *                  {
         *                      // 節点の局所座標
         *                      double ri = n_pts[i][0];
         *                      double si = n_pts[i][1];
         *                      // 形状関数N
         *                      N[i] = 0.5 * (1.0 + ri * r) * (1.0 - s * s);
         *                      // 形状関数のr方向微分
         *                      dNdr[i] = 0.5 * ri * (1.0 - s * s);
         *                      // 形状関数のs方向微分
         *                      dNds[i] = -1.0 * s * (1.0 + ri * r);
         *                  }
         *
         *                  // ヤコビアン行列
         *                  double j11;
         *                  double j12;
         *                  double j21;
         *                  double j22;
         *                  j11 = 0;
         *                  j12 = 0;
         *                  j21 = 0;
         *                  j22 = 0;
         *
         *                  //for (int i = 0; i < vertexCnt; i++)
         *                  //{
         *                  //    // 頂点の座標の微分
         *                  //    // 座標の形状関数は一次四角形のものを使用する
         *                  //    // 節点の局所座標
         *                  //    double ri = n_pts[i][0];
         *                  //    double si = n_pts[i][1];
         *                  //    double dNdr_1stOrder = 0.25 * ri * (1.0 + si * s);
         *                  //    double dNds_1stOrder = 0.25 * (1.0 + ri * r) * si;
         *                  //    j11 += dNdr_1stOrder * pp[i][0];
         *                  //    j12 += dNdr_1stOrder * pp[i][1];
         *                  //    j21 += dNds_1stOrder * pp[i][0];
         *                  //    j22 += dNds_1stOrder * pp[i][1];
         *                  //}
         *
         *                  for (int i = 0; i < nno; i++)
         *                  {
         *                      j11 += dNdr[i] * pp[i][0];
         *                      j12 += dNdr[i] * pp[i][1];
         *                      j21 += dNds[i] * pp[i][0];
         *                      j22 += dNds[i] * pp[i][1];
         *                  }
         *                  // ヤコビアン
         *                  double detj = j11 * j22 - j12 * j21;
         *                  detjsum += detj * weight;
         *                  //System.Diagnostics.Debug.WriteLine("det:{0}", detj);
         *
         *                  // gradr[0] : gradrのx成分 grad[1] : gradrのy成分
         *                  // grads[0] : gradsのx成分 grads[1] : gradsのy成分
         *                  double[] gradr = new double[2];
         *                  double[] grads = new double[2];
         *                  gradr[0] =   j22 / detj;
         *                  gradr[1] = - j21 / detj;
         *                  grads[0] = - j12 / detj;
         *                  grads[1] =   j11 / detj;
         *
         *                  // 形状関数のx, y方向微分
         *                  double[,] dNdX = new double[ndim, nno];
         *                  for (int i = 0; i < nno; i++)
         *                  {
         *                      for (int direction = 0; direction < ndim; direction++)
         *                      {
         *                          dNdX[direction, i] = dNdr[i] * gradr[direction] + dNds[i] * grads[direction];
         *                      }
         *                  }
         *
         *                  // 汎関数
         *                  double functional = media_P[0, 0] * dNdX[1, ino] * dNdX[1, jno] + media_P[1, 1] * dNdX[0, ino] * dNdX[0, jno]
         *                                   - k0 * k0 * media_Q[2, 2] * N[ino] * N[jno];
         *                  emat[ino, jno] += detj * weight * functional;
         *              }
         *          }
         *          //System.Diagnostics.Debug.WriteLine("detsum: {0}", detjsum);
         *      }
         *  }
         *
         *  // 要素剛性行列にマージする
         *  for (int ino = 0; ino < nno; ino++)
         *  {
         *      int iNodeNumber = no_c[ino];
         *      if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue;
         *      int inoGlobal = toSorted[iNodeNumber];
         *      for (int jno = 0; jno < nno; jno++)
         *      {
         *          int jNodeNumber = no_c[jno];
         *          if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue;
         *          int jnoGlobal = toSorted[jNodeNumber];
         *
         *          mat[inoGlobal, jnoGlobal] += emat[ino, jno];
         *      }
         *  }
         * }
         */
        /// <summary>
        /// ヘルムホルツ方程式に対する有限要素マトリクス作成
        /// </summary>
        /// <param name="waveLength">波長</param>
        /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param>
        /// <param name="element">有限要素</param>
        /// <param name="Nodes">節点リスト</param>
        /// <param name="Medias">媒質リスト</param>
        /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param>
        /// <param name="WGStructureDv">導波路構造区分</param>
        /// <param name="WaveModeDv">計算する波のモード区分</param>
        /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param>
        /// <param name="mat">マージされる全体行列</param>
        public static void AddElementMat(double waveLength,
                                         Dictionary <int, int> toSorted,
                                         FemElement element,
                                         IList <FemNode> Nodes,
                                         MediaInfo[] Medias,
                                         Dictionary <int, bool> ForceNodeNumberH,
                                         FemSolver.WGStructureDV WGStructureDv,
                                         FemSolver.WaveModeDV WaveModeDv,
                                         double waveguideWidthForEPlane,
                                         ref MyComplexMatrix mat)
        {
            // 定数
            const double pi = Constants.pi;
            const double c0 = Constants.c0;
            // 波数
            double k0 = 2.0 * pi / waveLength;
            // 角周波数
            double omega = k0 * c0;

            // 要素頂点数
            //const int vertexCnt = Constants.QuadVertexCnt; //4;
            // 要素内節点数
            const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8;  // 2次セレンディピティ
            // 座標次元数
            const int ndim = Constants.CoordDim2D;                   //2;

            int[]     nodeNumbers = element.NodeNumbers;
            int[]     no_c        = new int[nno];
            MediaInfo media       = Medias[element.MediaIndex];

            double[,] media_P = null;
            double[,] media_Q = null;
            // ヘルムホルツ方程式のパラメータP,Qを取得する
            FemSolver.GetHelmholtzMediaPQ(
                k0,
                media,
                WGStructureDv,
                WaveModeDv,
                waveguideWidthForEPlane,
                out media_P,
                out media_Q);

            // 節点座標(IFの都合上配列の配列形式の2次元配列を作成)
            double[][] pp = new double[nno][];
            for (int ino = 0; ino < nno; ino++)
            {
                int     nodeNumber = nodeNumbers[ino];
                int     nodeIndex  = nodeNumber - 1;
                FemNode node       = Nodes[nodeIndex];

                no_c[ino] = nodeNumber;
                pp[ino]   = new double[ndim];
                for (int n = 0; n < ndim; n++)
                {
                    pp[ino][n] = node.Coord[n];
                }
            }

            // 四角形の辺の長さを求める
            double[] le = new double[4];
            le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]);
            le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]);
            le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]);
            le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]);
            System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit);
            System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit);
            double lx = le[0];
            double ly = le[1];

            // 要素節点座標( 局所r,s成分 )
            //        s
            //        |
            //    3+  6  +2
            //    |   |   |
            // ---7---+---5-->r
            //    |   |   |
            //    0+  4  +1
            //        |
            //
            double[][] n_pts =
            {
                // r, s
                new double[] { -1.0, -1.0 },    //0
                new double[] {  1.0, -1.0 },    //1
                new double[] {  1.0,  1.0 },    //2
                new double[] { -1.0,  1.0 },    //3
                new double[] {    0, -1.0 },    //4
                new double[] {  1.0,    0 },    //5
                new double[] {    0,  1.0 },    //6
                new double[] { -1.0,    0 },    //7
            };

            // Ni = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7
            double[,] Ni_a = new double[nno, 8];
            for (int i = 0; i < 4; i++)
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                Ni_a[i, 0] = 0.25 * ri * ri * si;
                Ni_a[i, 1] = 0.25 * ri * ri;
                Ni_a[i, 2] = 0.0;
                Ni_a[i, 3] = 0.25 * ri * si;
                Ni_a[i, 4] = 0.25 * ri * si * si;
                Ni_a[i, 5] = 0.25 * si * si;
                Ni_a[i, 6] = 0.0;
                Ni_a[i, 7] = -0.25;
            }
            foreach (int i in new int[] { 4, 6 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                Ni_a[i, 0] = -0.5 * si;
                Ni_a[i, 1] = -0.5;
                Ni_a[i, 2] = 0.0;
                Ni_a[i, 3] = 0.0;
                Ni_a[i, 4] = 0.0;
                Ni_a[i, 5] = 0.0;
                Ni_a[i, 6] = 0.5 * si;
                Ni_a[i, 7] = 0.5;
            }
            foreach (int i in new int[] { 5, 7 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                Ni_a[i, 0] = 0.0;
                Ni_a[i, 1] = 0.0;
                Ni_a[i, 2] = 0.5 * ri;
                Ni_a[i, 3] = 0.0;
                Ni_a[i, 4] = -0.5 * ri;
                Ni_a[i, 5] = -0.5;
                Ni_a[i, 6] = 0.0;
                Ni_a[i, 7] = 0.5;
            }

            // dNidr = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7
            double[,] dNidr_a = new double[nno, 8];
            for (int i = 0; i < 4; i++)
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNidr_a[i, 0] = 0.0;
                dNidr_a[i, 1] = 0.0;                       // r^2
                dNidr_a[i, 2] = 0.25 * 2.0 * ri * ri;      // r
                dNidr_a[i, 3] = 0.25 * 2.0 * ri * ri * si; // rs
                dNidr_a[i, 4] = 0.0;
                dNidr_a[i, 5] = 0.25 * ri * si * si;       // s^2
                dNidr_a[i, 6] = 0.25 * ri * si;            // s
                dNidr_a[i, 7] = 0.0;                       //1
            }
            foreach (int i in new int[] { 4, 6 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNidr_a[i, 0] = 0.0;
                dNidr_a[i, 1] = 0.0;  // r^2
                dNidr_a[i, 2] = -1.0; // r
                dNidr_a[i, 3] = -si;  // rs
                dNidr_a[i, 4] = 0.0;
                dNidr_a[i, 5] = 0.0;  // s^2
                dNidr_a[i, 6] = 0.0;  // s
                dNidr_a[i, 7] = 0.0;  // 1
            }
            foreach (int i in new int[] { 5, 7 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNidr_a[i, 0] = 0.0;
                dNidr_a[i, 1] = 0.0;       // r^2
                dNidr_a[i, 2] = 0.0;       // r
                dNidr_a[i, 3] = 0.0;       // rs
                dNidr_a[i, 4] = 0.0;
                dNidr_a[i, 5] = -0.5 * ri; // s^2
                dNidr_a[i, 6] = 0.0;       // s
                dNidr_a[i, 7] = 0.5 * ri;  // 1
            }

            // dNids = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7
            double[,] dNids_a = new double[nno, 8];
            for (int i = 0; i < 4; i++)
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNids_a[i, 0] = 0.0;
                dNids_a[i, 1] = 0.25 * ri * ri * si;       // r^2
                dNids_a[i, 2] = 0.25 * ri * si;            // r
                dNids_a[i, 3] = 0.25 * 2.0 * ri * si * si; // rs
                dNids_a[i, 4] = 0.0;
                dNids_a[i, 5] = 0.0;                       // s^2
                dNids_a[i, 6] = 0.25 * 2.0 * si * si;      // s
                dNids_a[i, 7] = 0.0;                       //1
            }
            foreach (int i in new int[] { 4, 6 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNids_a[i, 0] = 0.0;
                dNids_a[i, 1] = -0.5 * si; // r^2
                dNids_a[i, 2] = 0.0;       // r
                dNids_a[i, 3] = 0.0;       // rs
                dNids_a[i, 4] = 0.0;
                dNids_a[i, 5] = 0.0;       // s^2
                dNids_a[i, 6] = 0.0;       // s
                dNids_a[i, 7] = 0.5 * si;  //1
            }
            foreach (int i in new int[] { 5, 7 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNids_a[i, 0] = 0.0;
                dNids_a[i, 1] = 0.0;  // r^2
                dNids_a[i, 2] = 0.0;  // r
                dNids_a[i, 3] = -ri;  // rs
                dNids_a[i, 4] = 0.0;
                dNids_a[i, 5] = 0.0;  // s^2
                dNids_a[i, 6] = -1.0; // s
                dNids_a[i, 7] = 0.0;  //1
            }

            // ∫dN/dndN/dn dxdy
            //     integralDNDX[n, ino, jno]  n = 0 --> ∫dN/dxdN/dx dxdy
            //                                n = 1 --> ∫dN/dydN/dy dxdy
            double[, ,] integralDNDX = new double[ndim, nno, nno];
            // ∫N N dxdy
            double[,] integralN = new double[nno, nno];
            for (int ino = 0; ino < nno; ino++)
            {
                for (int jno = 0; jno < nno; jno++)
                {
                    integralN[ino, jno] = lx * ly / 4.0 *
                                          (
                        // r^4s^2
                        4.0 / 15.0 * Ni_a[ino, 0] * Ni_a[jno, 0]
                        // r^2s^2
                        + 4.0 / 9.0 * (Ni_a[ino, 6] * Ni_a[jno, 0] + Ni_a[ino, 5] * Ni_a[jno, 1] + Ni_a[ino, 4] * Ni_a[jno, 2] + Ni_a[ino, 3] * Ni_a[jno, 3]
                                       + Ni_a[ino, 2] * Ni_a[jno, 4] + Ni_a[ino, 1] * Ni_a[jno, 5] + Ni_a[ino, 0] * Ni_a[jno, 6])
                        // r^4
                        + 4.0 / 5.0 * Ni_a[ino, 1] * Ni_a[jno, 1]
                        // r^2
                        + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 1] + Ni_a[ino, 2] * Ni_a[jno, 2] + Ni_a[ino, 1] * Ni_a[jno, 7])
                        // r^2s^4
                        + 4.0 / 15.0 * Ni_a[ino, 4] * Ni_a[jno, 4]
                        // s^4
                        + 4.0 / 5.0 * Ni_a[ino, 5] * Ni_a[jno, 5]
                        // s^2
                        + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 5] + Ni_a[ino, 6] * Ni_a[jno, 6] + Ni_a[ino, 5] * Ni_a[jno, 7])
                        // 1
                        + 4.0 * Ni_a[ino, 7] * Ni_a[jno, 7]
                                          );
                    integralDNDX[0, ino, jno] = ly / lx *
                                                (
                        // r^4s^2
                        4.0 / 15.0 * dNidr_a[ino, 0] * dNidr_a[jno, 0]
                        // r^2s^2
                        + 4.0 / 9.0 * (dNidr_a[ino, 6] * dNidr_a[jno, 0] + dNidr_a[ino, 5] * dNidr_a[jno, 1] + dNidr_a[ino, 4] * dNidr_a[jno, 2]
                                       + dNidr_a[ino, 3] * dNidr_a[jno, 3]
                                       + dNidr_a[ino, 2] * dNidr_a[jno, 4] + dNidr_a[ino, 1] * dNidr_a[jno, 5] + dNidr_a[ino, 0] * dNidr_a[jno, 6])
                        // r^4
                        + 4.0 / 5.0 * dNidr_a[ino, 1] * dNidr_a[jno, 1]
                        // r^2
                        + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 1] + dNidr_a[ino, 2] * dNidr_a[jno, 2] + dNidr_a[ino, 1] * dNidr_a[jno, 7])
                        // r^2s^4
                        + 4.0 / 15.0 * dNidr_a[ino, 4] * dNidr_a[jno, 4]
                        // s^4
                        + 4.0 / 5.0 * dNidr_a[ino, 5] * dNidr_a[jno, 5]
                        // s^2
                        + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 5] + dNidr_a[ino, 6] * dNidr_a[jno, 6] + dNidr_a[ino, 5] * dNidr_a[jno, 7])
                        // 1
                        + 4.0 * dNidr_a[ino, 7] * dNidr_a[jno, 7]
                                                );
                    integralDNDX[1, ino, jno] = lx / ly *
                                                (
                        // r^4s^2
                        4.0 / 15.0 * dNids_a[ino, 0] * dNids_a[jno, 0]
                        // r^2s^2
                        + 4.0 / 9.0 * (dNids_a[ino, 6] * dNids_a[jno, 0] + dNids_a[ino, 5] * dNids_a[jno, 1] + dNids_a[ino, 4] * dNids_a[jno, 2]
                                       + dNids_a[ino, 3] * dNids_a[jno, 3]
                                       + dNids_a[ino, 2] * dNids_a[jno, 4] + dNids_a[ino, 1] * dNids_a[jno, 5] + dNids_a[ino, 0] * dNids_a[jno, 6])
                        // r^4
                        + 4.0 / 5.0 * dNids_a[ino, 1] * dNids_a[jno, 1]
                        // r^2
                        + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 1] + dNids_a[ino, 2] * dNids_a[jno, 2] + dNids_a[ino, 1] * dNids_a[jno, 7])
                        // r^2s^4
                        + 4.0 / 15.0 * dNids_a[ino, 4] * dNids_a[jno, 4]
                        // s^4
                        + 4.0 / 5.0 * dNids_a[ino, 5] * dNids_a[jno, 5]
                        // s^2
                        + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 5] + dNids_a[ino, 6] * dNids_a[jno, 6] + dNids_a[ino, 5] * dNids_a[jno, 7])
                        // 1
                        + 4.0 * dNids_a[ino, 7] * dNids_a[jno, 7]
                                                );
                }
            }

            // 要素剛性行列を作る
            double[,] emat = new double[nno, nno];
            for (int ino = 0; ino < nno; ino++)
            {
                for (int jno = 0; jno < nno; jno++)
                {
                    emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno]
                                     - k0 * k0 * media_Q[2, 2] * integralN[ino, jno];
                }
            }

            // 要素剛性行列にマージする
            for (int ino = 0; ino < nno; ino++)
            {
                int iNodeNumber = no_c[ino];
                if (ForceNodeNumberH.ContainsKey(iNodeNumber))
                {
                    continue;
                }
                int inoGlobal = toSorted[iNodeNumber];
                for (int jno = 0; jno < nno; jno++)
                {
                    int jNodeNumber = no_c[jno];
                    if (ForceNodeNumberH.ContainsKey(jNodeNumber))
                    {
                        continue;
                    }
                    int jnoGlobal = toSorted[jNodeNumber];

                    //mat[inoGlobal, jnoGlobal] += emat[ino, jno];
                    //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno];
                    // 実数部に加算する
                    //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno];
                    // バンドマトリクス対応
                    mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno];
                }
            }
        }
Example #5
0
        /// <summary>
        /// ヘルムホルツ方程式に対する有限要素マトリクス作成
        /// </summary>
        /// <param name="waveLength">波長</param>
        /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param>
        /// <param name="element">有限要素</param>
        /// <param name="Nodes">節点リスト</param>
        /// <param name="Medias">媒質リスト</param>
        /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param>
        /// <param name="WGStructureDv">導波路構造区分</param>
        /// <param name="WaveModeDv">計算する波のモード区分</param>
        /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param>
        /// <param name="mat">マージされる全体行列(clapack使用時)</param>
        /// <param name="mat_cc">マージされる全体行列(DelFEM使用時)</param>
        /// <param name="res_c">マージされる残差ベクトル(DelFEM使用時)</param>
        /// <param name="tmpBuffer">一時バッファ(DelFEM使用時)</param>
        public static void AddElementMat(double waveLength,
                                         Dictionary <int, int> toSorted,
                                         FemElement element,
                                         IList <FemNode> Nodes,
                                         MediaInfo[] Medias,
                                         Dictionary <int, bool> ForceNodeNumberH,
                                         FemSolver.WGStructureDV WGStructureDv,
                                         FemSolver.WaveModeDV WaveModeDv,
                                         double waveguideWidthForEPlane,
                                         ref MyComplexMatrix mat,
                                         ref DelFEM4NetMatVec.CZMatDia_BlkCrs_Ptr mat_cc,
                                         ref DelFEM4NetMatVec.CZVector_Blk_Ptr res_c,
                                         ref int[] tmpBuffer)
        {
            // 定数
            const double pi = Constants.pi;
            const double c0 = Constants.c0;
            // 波数
            double k0 = 2.0 * pi / waveLength;
            // 角周波数
            double omega = k0 * c0;

            // 要素頂点数
            //const int vertexCnt = Constants.QuadVertexCnt; //4;
            // 要素内節点数
            const int nno = Constants.QuadNodeCnt_FirstOrder; //4;  // 1次セレンディピティ
            // 座標次元数
            const int ndim = Constants.CoordDim2D;            //2;

            int[]     nodeNumbers = element.NodeNumbers;
            int[]     no_c        = new int[nno];
            MediaInfo media       = Medias[element.MediaIndex];

            double[,] media_P = null;
            double[,] media_Q = null;
            // ヘルムホルツ方程式のパラメータP,Qを取得する
            FemSolver.GetHelmholtzMediaPQ(
                k0,
                media,
                WGStructureDv,
                WaveModeDv,
                waveguideWidthForEPlane,
                out media_P,
                out media_Q);

            // 節点座標(IFの都合上配列の配列形式の2次元配列を作成)
            double[][] pp = new double[nno][];
            for (int ino = 0; ino < nno; ino++)
            {
                int     nodeNumber = nodeNumbers[ino];
                int     nodeIndex  = nodeNumber - 1;
                FemNode node       = Nodes[nodeIndex];

                no_c[ino] = nodeNumber;
                pp[ino]   = new double[ndim];
                for (int n = 0; n < ndim; n++)
                {
                    pp[ino][n] = node.Coord[n];
                }
            }

            // 四角形の辺の長さを求める
            double[] le = new double[4];
            le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]);
            le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]);
            le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]);
            le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]);
            System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit);
            System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit);
            double lx = le[0];
            double ly = le[1];

            // 要素節点座標( 局所r,s成分 )
            //        s
            //        |
            //    3+  +  +2
            //    |   |   |
            // ---+---+---+-->r
            //    |   |   |
            //    0+  +  +1
            //        |
            //
            double[][] n_pts =
            {
                // r, s
                new double[] { -1.0, -1.0 },    //0
                new double[] {  1.0, -1.0 },    //1
                new double[] {  1.0,  1.0 },    //2
                new double[] { -1.0,  1.0 },    //3
            };

            // ∫dN/dndN/dn dxdy
            //     integralDNDX[n, ino, jno]  n = 0 --> ∫dN/dxdN/dx dxdy
            //                                n = 1 --> ∫dN/dydN/dy dxdy
            double[, ,] integralDNDX = new double[ndim, nno, nno]
            {
                {
                    { 2.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx) },
                    { -2.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx) },
                    { -1.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx) },
                    { 1.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx) },
                },
                {
                    { 2.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly) },
                    { 1.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly) },
                    { -1.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly) },
                    { -2.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly) },
                }
            };
            // ∫N N dxdy
            double[,] integralN = new double[nno, nno]
            {
                { 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 },
                { 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0 },
                { 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 },
                { 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0 },
            };

            // 要素剛性行列を作る
            double[,] emat = new double[nno, nno];
            for (int ino = 0; ino < nno; ino++)
            {
                for (int jno = 0; jno < nno; jno++)
                {
                    emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno]
                                     - k0 * k0 * media_Q[2, 2] * integralN[ino, jno];
                }
            }

            // 要素剛性行列にマージする
            if (mat_cc != null)
            {
                // 全体節点番号→要素内節点インデックスマップ
                Dictionary <uint, int> inoGlobalDic = new Dictionary <uint, int>();
                for (int ino = 0; ino < nno; ino++)
                {
                    int iNodeNumber = no_c[ino];
                    if (ForceNodeNumberH.ContainsKey(iNodeNumber))
                    {
                        continue;
                    }
                    uint inoGlobal = (uint)toSorted[iNodeNumber];
                    inoGlobalDic.Add(inoGlobal, ino);
                }
                // マージ用の節点番号リスト
                uint[] no_c_tmp = inoGlobalDic.Keys.ToArray <uint>();
                // マージする節点数("col"と"row"のサイズ)
                uint ncolrow_tmp = (uint)no_c_tmp.Length;
                // Note:
                //   要素の節点がすべて強制境界の場合がある.その場合は、ncolrow_tmpが0
                if (ncolrow_tmp > 0)
                {
                    // マージする要素行列
                    DelFEM4NetCom.Complex[] ematBuffer = new DelFEM4NetCom.Complex[ncolrow_tmp * ncolrow_tmp];
                    for (int ino_tmp = 0; ino_tmp < ncolrow_tmp; ino_tmp++)
                    {
                        int ino = inoGlobalDic[no_c_tmp[ino_tmp]];
                        for (int jno_tmp = 0; jno_tmp < ncolrow_tmp; jno_tmp++)
                        {
                            int    jno   = inoGlobalDic[no_c_tmp[jno_tmp]];
                            double value = emat[ino, jno];
                            DelFEM4NetCom.Complex cvalueDelFEM = new DelFEM4NetCom.Complex(value, 0);
                            // ematBuffer[ino_tmp, jno_tmp] 横ベクトルを先に埋める(clapack方式でないことに注意)
                            ematBuffer[ino_tmp * ncolrow_tmp + jno_tmp] = cvalueDelFEM;
                        }
                    }
                    // 全体行列に要素行列をマージする
                    mat_cc.Mearge(ncolrow_tmp, no_c_tmp, ncolrow_tmp, no_c_tmp, 1, ematBuffer, ref tmpBuffer);
                }
            }
            else if (mat != null)
            {
                for (int ino = 0; ino < nno; ino++)
                {
                    int iNodeNumber = no_c[ino];
                    if (ForceNodeNumberH.ContainsKey(iNodeNumber))
                    {
                        continue;
                    }
                    int inoGlobal = toSorted[iNodeNumber];
                    for (int jno = 0; jno < nno; jno++)
                    {
                        int jNodeNumber = no_c[jno];
                        if (ForceNodeNumberH.ContainsKey(jNodeNumber))
                        {
                            continue;
                        }
                        int jnoGlobal = toSorted[jNodeNumber];

                        //mat[inoGlobal, jnoGlobal] += emat[ino, jno];
                        //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno];
                        // 実数部に加算する
                        //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno];
                        // バンドマトリクス対応
                        mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno];
                    }
                }
            }
        }
Example #6
0
        /// <summary>
        ///  Fem入力データをファイルから読み込み
        /// </summary>
        /// <param name="filename">ファイル名(*.fem)</param>
        /// <param name="nodes">節点リスト</param>
        /// <param name="elements">要素リスト</param>
        /// <param name="ports">ポートの節点番号リストのリスト</param>
        /// <param name="forceBCNodes">強制境界節点番号リスト</param>
        /// <param name="incidentPortNo">入射ポート番号</param>
        /// <param name="medias">媒質情報リスト</param>
        /// <param name="firstWaveLength">計算開始波長</param>
        /// <param name="lastWaveLength">計算終了波長</param>
        /// <param name="calcCnt">計算件数</param>
        /// <param name="wgStructureDv">導波路構造区分</param>
        /// <param name="waveModeDv">波のモード区分</param>
        /// <param name="lsEqnSoverDv">線形方程式解法区分</param>
        /// <param name="waveguideWidthForEPlane">導波管幅(E面解析用)</param>
        /// <returns></returns>
        public static bool LoadFromFile(
            string filename,
            out IList <FemNode> nodes,
            out IList <FemElement> elements,
            out IList <IList <int> > ports,
            out IList <int> forceBCNodes,
            out int incidentPortNo,
            out MediaInfo[] medias,
            out double firstWaveLength,
            out double lastWaveLength,
            out int calcCnt,
            out FemSolver.WGStructureDV wgStructureDv,
            out FemSolver.WaveModeDV waveModeDv,
            out FemSolver.LinearSystemEqnSoverDV lsEqnSoverDv,
            out double waveguideWidthForEPlane
            )
        {
            int eNodeCnt = 0;

            nodes          = new List <FemNode>();
            elements       = new List <FemElement>();
            ports          = new List <IList <int> >();
            forceBCNodes   = new List <int>();
            incidentPortNo = 1;
            medias         = new MediaInfo[Constants.MaxMediaCount];
            for (int i = 0; i < medias.Length; i++)
            {
                MediaInfo media = new MediaInfo();
                media.BackColor = CadLogic.MediaBackColors[i];
                medias[i]       = media;
            }
            firstWaveLength         = 0.0;
            lastWaveLength          = 0.0;
            calcCnt                 = 0;
            wgStructureDv           = Constants.DefWGStructureDv;
            waveModeDv              = Constants.DefWaveModeDv;
            lsEqnSoverDv            = Constants.DefLsEqnSolverDv;
            waveguideWidthForEPlane = 0;

            if (!File.Exists(filename))
            {
                return(false);
            }

            // 入力データ読み込み
            try
            {
                using (StreamReader sr = new StreamReader(filename))
                {
                    const char delimiter = ',';
                    string     line;
                    string[]   tokens;

                    line   = sr.ReadLine();
                    tokens = line.Split(delimiter);
                    if (tokens.Length != 2 || tokens[0] != "Nodes")
                    {
                        MessageBox.Show("節点情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return(false);
                    }
                    int nodeCnt = int.Parse(tokens[1]);
                    for (int i = 0; i < nodeCnt; i++)
                    {
                        line   = sr.ReadLine();
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 3)
                        {
                            MessageBox.Show("節点情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        int no = int.Parse(tokens[0]);
                        if (no != i + 1)
                        {
                            MessageBox.Show("節点番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        FemNode femNode = new FemNode();
                        femNode.No       = no;
                        femNode.Coord    = new double[2];
                        femNode.Coord[0] = double.Parse(tokens[1]);
                        femNode.Coord[1] = double.Parse(tokens[2]);
                        nodes.Add(femNode);
                    }

                    line   = sr.ReadLine();
                    tokens = line.Split(delimiter);
                    if (tokens.Length != 2 || tokens[0] != "Elements")
                    {
                        MessageBox.Show("要素情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return(false);
                    }
                    int elementCnt = int.Parse(tokens[1]);
                    for (int i = 0; i < elementCnt; i++)
                    {
                        line   = sr.ReadLine();
                        tokens = line.Split(delimiter);
                        if ((tokens.Length != 1 + Constants.TriNodeCnt_SecondOrder) &&
                            (tokens.Length != 2 + Constants.TriNodeCnt_SecondOrder) &&  // ver1.1.0.0で媒質インデックスを番号の後に挿入
                            (tokens.Length != 2 + Constants.QuadNodeCnt_SecondOrder_Type2) &&
                            (tokens.Length != 2 + Constants.TriNodeCnt_FirstOrder) &&
                            (tokens.Length != 2 + Constants.QuadNodeCnt_FirstOrder)
                            )
                        {
                            MessageBox.Show("要素情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        int elemNo       = int.Parse(tokens[0]);
                        int mediaIndex   = 0;
                        int indexOffset  = 1; // ver1.0.0.0
                        int workENodeCnt = Constants.TriNodeCnt_SecondOrder;
                        if (tokens.Length == 1 + Constants.TriNodeCnt_SecondOrder)
                        {
                            // 媒質インデックスのない古い形式(ver1.0.0.0)
                        }
                        else
                        {
                            // ver1.1.0.0で媒質インデックスを追加
                            mediaIndex  = int.Parse(tokens[1]);
                            indexOffset = 2;

                            workENodeCnt = tokens.Length - 2;
                        }
                        if (workENodeCnt <= 0)
                        {
                            MessageBox.Show("要素節点数が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        if (eNodeCnt == 0)
                        {
                            // 最初の要素の節点数を格納(チェックに利用)
                            eNodeCnt = workENodeCnt;
                        }
                        else
                        {
                            // 要素の節点数が変わった?
                            if (workENodeCnt != eNodeCnt)
                            {
                                MessageBox.Show("要素節点数が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                                return(false);
                            }
                        }
                        //FemElement femElement = new FemElement();
                        FemElement femElement = FemMeshLogic.CreateFemElementByElementNodeCnt(eNodeCnt);
                        femElement.No          = elemNo;
                        femElement.MediaIndex  = mediaIndex;
                        femElement.NodeNumbers = new int[eNodeCnt];
                        for (int n = 0; n < femElement.NodeNumbers.Length; n++)
                        {
                            femElement.NodeNumbers[n] = int.Parse(tokens[n + indexOffset]);
                        }
                        elements.Add(femElement);
                    }

                    line   = sr.ReadLine();
                    tokens = line.Split(delimiter);
                    if (tokens.Length != 2 || tokens[0] != "Ports")
                    {
                        MessageBox.Show("入出力ポート情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return(false);
                    }
                    int portCnt = int.Parse(tokens[1]);
                    for (int i = 0; i < portCnt; i++)
                    {
                        line   = sr.ReadLine();
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 2)
                        {
                            MessageBox.Show("入出力ポート情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        int portNo      = int.Parse(tokens[0]);
                        int portNodeCnt = int.Parse(tokens[1]);
                        if (portNo != i + 1)
                        {
                            MessageBox.Show("ポート番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                            return(false);
                        }
                        IList <int> portNodes = new List <int>();
                        for (int n = 0; n < portNodeCnt; n++)
                        {
                            line   = sr.ReadLine();
                            tokens = line.Split(delimiter);
                            if (tokens.Length != 2)
                            {
                                MessageBox.Show("ポートの節点情報が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                                return(false);
                            }
                            int portNodeNumber = int.Parse(tokens[0]);
                            int nodeNumber     = int.Parse(tokens[1]);
                            if (portNodeNumber != n + 1)
                            {
                                MessageBox.Show("ポートの節点番号が不正です", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                                return(false);
                            }
                            portNodes.Add(nodeNumber);
                        }
                        ports.Add(portNodes);
                    }

                    line   = sr.ReadLine();
                    tokens = line.Split(delimiter);
                    if (tokens.Length != 2 || tokens[0] != "Force")
                    {
                        MessageBox.Show("強制境界情報がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return(false);
                    }
                    int forceNodeCnt = int.Parse(tokens[1]);
                    for (int i = 0; i < forceNodeCnt; i++)
                    {
                        line = sr.ReadLine();
                        int nodeNumber = int.Parse(line);
                        forceBCNodes.Add(nodeNumber);
                    }

                    line   = sr.ReadLine();
                    tokens = line.Split(delimiter);
                    if (tokens.Length != 2 || tokens[0] != "IncidentPortNo")
                    {
                        MessageBox.Show("入射ポート番号がありません", "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                        return(false);
                    }
                    incidentPortNo = int.Parse(tokens[1]);

                    //////////////////////////////////////////
                    //// Ver1.1.0.0からの追加情報
                    //////////////////////////////////////////
                    line = sr.ReadLine();
                    if (line == null || line.Length == 0)
                    {
                        // 媒質情報なし
                        // ver1.0.0.0
                    }
                    else
                    {
                        // 媒質情報?
                        // ver1.1.0.0
                        tokens = line.Split(delimiter);
                        if (tokens[0] != "Medias")
                        {
                            MessageBox.Show("媒質情報がありません");
                            return(false);
                        }
                        int cnt = int.Parse(tokens[1]);
                        if (cnt > Constants.MaxMediaCount)
                        {
                            MessageBox.Show("媒質情報の個数が不正です");
                            return(false);
                        }
                        for (int i = 0; i < cnt; i++)
                        {
                            line = sr.ReadLine();
                            if (line.Length == 0)
                            {
                                MessageBox.Show("媒質情報が不正です");
                                return(false);
                            }
                            tokens = line.Split(delimiter);
                            if (tokens.Length != 1 + 9 + 9)
                            {
                                MessageBox.Show("媒質情報が不正です");
                                return(false);
                            }
                            int mediaIndex = int.Parse(tokens[0]);
                            System.Diagnostics.Debug.Assert(mediaIndex == i);

                            double[,] p = new double[3, 3];
                            for (int m = 0; m < p.GetLength(0); m++)
                            {
                                for (int n = 0; n < p.GetLength(1); n++)
                                {
                                    p[m, n] = double.Parse(tokens[1 + m * p.GetLength(1) + n]);
                                }
                            }
                            medias[i].SetP(p);

                            double[,] q = new double[3, 3];
                            for (int m = 0; m < q.GetLength(0); m++)
                            {
                                for (int n = 0; n < q.GetLength(1); n++)
                                {
                                    q[m, n] = double.Parse(tokens[1 + 9 + m * q.GetLength(1) + n]);
                                }
                            }
                            medias[i].SetQ(q);
                        }
                    }
                    line = sr.ReadLine();
                    if (line == null || line.Length == 0)
                    {
                    }
                    else
                    {
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 4 || tokens[0] != "WaveLengthRange")
                        {
                            MessageBox.Show("計算対象周波数情報がありません");
                            return(false);
                        }
                        firstWaveLength = double.Parse(tokens[1]);
                        lastWaveLength  = double.Parse(tokens[2]);
                        calcCnt         = int.Parse(tokens[3]);
                    }
                    line = sr.ReadLine();
                    if (line == null || line.Length == 0)
                    {
                    }
                    else
                    {
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 2 || tokens[0] != "LsEqnSolverDv")
                        {
                            MessageBox.Show("線形方程式解法区分情報がありません");
                            return(false);
                        }
                        string value = tokens[1];
                        lsEqnSoverDv = FemSolver.StrToLinearSystemEqnSolverDV(value);
                    }
                    line = sr.ReadLine();
                    if (line == null || line.Length == 0)
                    {
                    }
                    else
                    {
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 2 || tokens[0] != "WaveModeDv")
                        {
                            MessageBox.Show("計算対象モード区分情報がありません");
                            return(false);
                        }
                        if (tokens[1] == "TE")
                        {
                            waveModeDv = FemSolver.WaveModeDV.TE;
                        }
                        else if (tokens[1] == "TM")
                        {
                            waveModeDv = FemSolver.WaveModeDV.TM;
                        }
                        else
                        {
                            MessageBox.Show("計算対象モード区分情報が不正です");
                            return(false);
                        }
                    }
                    line = sr.ReadLine();
                    if (line == null || line.Length == 0)
                    {
                    }
                    else
                    {
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 2 || tokens[0] != "WGStructureDv")
                        {
                            MessageBox.Show("計算対象導波路構造区分情報がありません");
                            return(false);
                        }
                        wgStructureDv = FemSolver.StrToWGStructureDV(tokens[1]);
                    }
                    line = sr.ReadLine();
                    if (line == null || line.Length == 0)
                    {
                    }
                    else
                    {
                        tokens = line.Split(delimiter);
                        if (tokens.Length != 2 || tokens[0] != "WaveguideWidthForEPlane")
                        {
                            MessageBox.Show("E面解析用導波路幅がありません");
                            return(false);
                        }
                        waveguideWidthForEPlane = double.Parse(tokens[1]);
                    }
                }
            }
            catch (Exception exception)
            {
                System.Diagnostics.Debug.WriteLine(exception.Message + " " + exception.StackTrace);
                MessageBox.Show(exception.Message, "", MessageBoxButtons.OK, MessageBoxIcon.Error);
                return(false);
            }

            return(true);
        }
Example #7
0
        /// <summary>
        /// 描画領域をセットアップ
        /// </summary>
        /// <param name="out_rectLiList"></param>
        private void setupDrawRect(out IList <double[][]> out_rectLiList, out int orginVertexNo)
        {
            orginVertexNo  = 2;
            out_rectLiList = new List <double[][]>();

            if (_Nodes == null)
            {
                return;
            }
            const int ndim      = Constants.CoordDim2D;   //2;      // 座標の次元数
            const int vertexCnt = Constants.TriVertexCnt; //3; // 三角形の頂点の数(2次要素でも同じ)
            //const int nodeCnt = Constants.TriNodeCnt_SecondOrder; //6;  // 三角形2次要素
            int nodeCnt = NodeNumbers.Length;

            if (nodeCnt != Constants.TriNodeCnt_SecondOrder && nodeCnt != Constants.TriNodeCnt_FirstOrder)
            {
                return;
            }

            // 三角形の節点座標を取得
            double[][] pp = new double[nodeCnt][];
            for (int ino = 0; ino < pp.GetLength(0); ino++)
            {
                FemNode node = _Nodes[ino];
                System.Diagnostics.Debug.Assert(node.Coord.Length == ndim);
                pp[ino] = new double[ndim];
                // 取りあえず規格化した値で計算する
                pp[ino][0] = node.Coord[0];
                pp[ino][1] = -node.Coord[1];   // Y方向は逆にする
            }

            // 下記分割ロジックの原点となる頂点
            //   頂点0固定で計算していたが、原点の内角が直角のとき長方形メッシュになるので原点を2(頂点を0,1,2としたとき)にする
            //int orginVertexNo = 2;
            // 内角が最大の頂点を取得し、その頂点を原点とする(後のロジックは原点が頂点を0,1,2としたとき、2になっている
            {
                double minCosth         = double.MaxValue;
                int    minCosthVertexNo = 0;
                for (int ino = 0; ino < vertexCnt; ino++)
                {
                    const int  vecCnt = 2;
                    double[][] vec    = new double[vecCnt][] { new double[ndim] {
                                                                   0, 0
                                                               }, new double[ndim] {
                                                                   0, 0
                                                               } };
                    double[] len = new double[vecCnt];
                    double   costh;
                    {
                        int n1 = ino;
                        int n2 = (ino + 1) % 3;
                        int n3 = (ino + 2) % 3;
                        vec[0][0] = pp[n2][0] - pp[n1][0];
                        vec[0][1] = pp[n2][1] - pp[n1][1];
                        vec[1][0] = pp[n3][0] - pp[n1][0];
                        vec[1][1] = pp[n3][1] - pp[n1][1];
                        len[0]    = FemMeshLogic.GetDistance(pp[n1], pp[n2]);
                        len[1]    = FemMeshLogic.GetDistance(pp[n1], pp[n3]);
                        costh     = (vec[0][0] * vec[1][0] + vec[0][1] * vec[1][1]) / (len[0] * len[1]);
                        if (costh < minCosth)
                        {
                            minCosth         = costh;
                            minCosthVertexNo = ino;
                        }
                    }
                }
                orginVertexNo = (minCosthVertexNo + 2) % 3;
            }
            // 三角形内部を四角形で分割
            // 面積座標L1方向分割数
            //int ndiv = 4;
            int    ndiv   = this.IsCoarseFieldMesh ? (Constants.TriDrawFieldMshDivCnt / 2) : Constants.TriDrawFieldMshDivCnt;
            double defdL1 = 1.0 / (double)ndiv;
            double defdL2 = defdL1;

            for (int i1 = 0; i1 < ndiv; i1++)
            {
                double vL1     = i1 * defdL1;
                double vL1Next = (i1 + 1) * defdL1;
                if (i1 == ndiv - 1)
                {
                    vL1Next = 1.0;
                }
                double vL2max = 1.0 - vL1;
                if (vL2max < 0.0)
                {
                    // ERROR
                    System.Diagnostics.Debug.WriteLine("logic error vL2max = {0}", vL2max);
                    continue;
                }
                double fdiv2 = (double)ndiv * vL2max;
                int    ndiv2 = (int)fdiv2;
                if (fdiv2 - (double)ndiv2 > Constants.PrecisionLowerLimit)
                {
                    ndiv2++;
                }
                for (int i2 = 0; i2 < ndiv2; i2++)
                {
                    double vL2     = i2 * defdL2;
                    double vL2Next = (i2 + 1) * defdL2;
                    if (i2 == ndiv2 - 1)
                    {
                        vL2Next = vL2max;
                    }
                    double vL3 = 1.0 - vL1 - vL2;
                    if (vL3 < 0.0)
                    {
                        // ERROR
                        System.Diagnostics.Debug.WriteLine("logic error vL3 = {0}", vL3);
                        continue;
                    }

                    // 四角形の頂点
                    const int  rectVCnt = 4;
                    double[][] rectLi   = new double[rectVCnt][]
                    {
                        new double[] { vL1, vL2, 0 },
                        new double[] { vL1Next, vL2, 0 },
                        new double[] { vL1Next, vL2Next, 0 },
                        new double[] { vL1, vL2Next, 0 }
                    };
                    if ((i1 == ndiv - 1) || (i2 == ndiv2 - 1))
                    {
                        for (int k = 0; k < 3; k++)
                        {
                            rectLi[2][k] = rectLi[3][k];
                        }
                    }
                    for (int ino = 0; ino < rectVCnt; ino++)
                    {
                        if (rectLi[ino][0] < 0.0)
                        {
                            rectLi[ino][0] = 0.0;
                            System.Diagnostics.Debug.WriteLine("logical error rectLi[{0}][0] = {1}", ino, rectLi[ino][0]);
                        }
                        if (rectLi[ino][0] > 1.0)
                        {
                            rectLi[ino][0] = 1.0;
                            System.Diagnostics.Debug.WriteLine("logical error rectLi[{0}][0] = {1}", ino, rectLi[ino][0]);
                        }
                        if (rectLi[ino][1] < 0.0)
                        {
                            rectLi[ino][1] = 0.0;
                            System.Diagnostics.Debug.WriteLine("logical error rectLi[{0}][1] = {1}", ino, rectLi[ino][1]);
                        }
                        if (rectLi[ino][1] > (1.0 - rectLi[ino][0]))  // L2最大値(1 - L1)チェック
                        {
                            rectLi[ino][1] = 1.0 - rectLi[ino][0];
                        }
                        rectLi[ino][2] = 1.0 - rectLi[ino][0] - rectLi[ino][1];
                        if (rectLi[ino][2] < 0.0)
                        {
                            System.Diagnostics.Debug.WriteLine("logical error rectLi[{0}][2] = {1}", ino, rectLi[ino][2]);
                        }
                    }

                    /*
                     * double[][] shiftedRectLi = new double[rectVCnt][];
                     * for (int ino = 0; ino < rectVCnt; ino++)
                     * {
                     *  shiftedRectLi[ino] = new double[vertexCnt];
                     *  for (int k = 0; k < vertexCnt; k++)
                     *  {
                     *      shiftedRectLi[ino][k] = rectLi[ino][(k + orginVertexNo) % vertexCnt];
                     *  }
                     * }
                     * out_rectLiList.Add(shiftedRectLi);
                     */
                    out_rectLiList.Add(rectLi);
                }
            }
        }
        /* 数値積分版
         * /// <summary>
         * /// ヘルムホルツ方程式に対する有限要素マトリクス作成
         * /// </summary>
         * /// <param name="waveLength">波長</param>
         * /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param>
         * /// <param name="element">有限要素</param>
         * /// <param name="Nodes">節点リスト</param>
         * /// <param name="Medias">媒質リスト</param>
         * /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param>
         * /// <param name="WaveModeDv">計算する波のモード区分</param>
         * /// <param name="mat">マージされる全体行列</param>
         * public static  void AddElementMat(double waveLength,
         *  Dictionary<int, int> toSorted,
         *  FemElement element,
         *  IList<FemNode> Nodes,
         *  MediaInfo[] Medias,
         *  Dictionary<int, bool> ForceNodeNumberH,
         *  FemSolver.WaveModeDv WaveModeDv,
         *  ref MyComplexMatrix mat)
         * {
         *  // 定数
         *  const double pi = Constants.pi;
         *  const double c0 = Constants.c0;
         *  // 波数
         *  double k0 = 2.0 * pi / waveLength;
         *  // 角周波数
         *  double omega = k0 * c0;
         *
         *  // 要素頂点数
         *  const int vertexCnt = Constants.QuadVertexCnt; //4;
         *  // 要素内節点数
         *  const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8;  // 2次セレンディピティ
         *  // 座標次元数
         *  const int ndim = Constants.CoordDim2D; //2;
         *
         *  int[] nodeNumbers = element.NodeNumbers;
         *  int[] no_c = new int[nno];
         *  MediaInfo media = Medias[element.MediaIndex];
         *  double[,] media_P = null;
         *  double[,] media_Q = null;
         *  if (WaveModeDv == FemSolver.WaveModeDv.TE)
         *  {
         *      media_P = media.P;
         *      media_Q = media.Q;
         *  }
         *  else if (WaveModeDv == FemSolver.WaveModeDv.TM)
         *  {
         *      media_P = media.Q;
         *      media_Q = media.P;
         *  }
         *  else
         *  {
         *      System.Diagnostics.Debug.Assert(false);
         *  }
         *  // [p]は逆数をとる
         *  media_P = MyMatrixUtil.matrix_Inverse(media_P);
         *
         *  // 節点座標(IFの都合上配列の配列形式の2次元配列を作成)
         *  double[][] pp = new double[nno][];
         *  for (int ino = 0; ino < nno; ino++)
         *  {
         *      int nodeNumber = nodeNumbers[ino];
         *      int nodeIndex = nodeNumber - 1;
         *      FemNode node = Nodes[nodeIndex];
         *
         *      no_c[ino] = nodeNumber;
         *      pp[ino] = new double[ndim];
         *      for (int n = 0; n < ndim; n++)
         *      {
         *          pp[ino][n] = node.Coord[n];
         *      }
         *  }
         *
         *  //// 四角形の辺の長さを求める
         *  //double[] le = new double[4];
         *  //le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]);
         *  //le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]);
         *  //le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]);
         *  //le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]);
         *
         *  // 要素節点座標( 局所r,s成分 )
         *  //        s
         *  //        |
         *  //    3+  6  +2
         *  //    |   |   |
         *  // ---7---+---5-->r
         *  //    |   |   |
         *  //    0+  4  +1
         *  //        |
         *  //
         *  double[][] n_pts =
         *      {
         *          // r, s
         *          new double[] {-1.0, -1.0},  //0
         *          new double[] { 1.0, -1.0},  //1
         *          new double[] { 1.0,  1.0},  //2
         *          new double[] {-1.0,  1.0},  //3
         *          new double[] {   0, -1.0},  //4
         *          new double[] { 1.0,    0},  //5
         *          new double[] {   0,  1.0},  //6
         *          new double[] {-1.0,    0},  //7
         *      };
         *
         *
         *  // ガウスルジャンドルの積分公式
         *  double[][] g_pts = new double[5][]
         *      {
         *          // ポイント(ξ: [-1 +1]区間)、重み
         *          new double[] { -0.90617985, 0.23692689},
         *          new double[] { -0.53846931, 0.47862867},
         *          new double[] {0.0, 0.56888889},
         *          new double[] {0.53846931, 0.47862867},
         *          new double[] {0.90617985, 0.23692689}
         *      };
         *
         *  // 要素剛性行列を作る
         *  double[,] emat = new Complex[nno, nno];
         *  for (int ino = 0; ino < nno; ino++)
         *  {
         *      for (int jno = 0; jno < nno; jno++)
         *      {
         *          emat[ino, jno] = 0.0;
         *          double detjsum = 0; //check
         *          foreach (double[] s_g_pt in g_pts)
         *          {
         *              foreach (double[] r_g_pt in g_pts)
         *              {
         *                  // 積分点
         *                  double r = r_g_pt[0];
         *                  double s = s_g_pt[0];
         *                  // 重み(2次元)
         *                  double weight = r_g_pt[1] * s_g_pt[1];
         *                  // 形状関数
         *                  double[] N = new double[nno];
         *                  // 形状関数のr, s方向微分
         *                  double[] dNdr = new double[nno];
         *                  double[] dNds = new double[nno];
         *                  // 節点0~3 : 四角形の頂点
         *                  for (int i = 0; i < 4; i++)
         *                  {
         *                      // 節点の局所座標
         *                      double ri = n_pts[i][0];
         *                      double si = n_pts[i][1];
         *                      // 形状関数N
         *                      N[i] = 0.25 * (1.0 + ri * r) * (1.0 + si * s) * (ri* r + si * s - 1.0);
         *                      // 形状関数のr方向微分
         *                      dNdr[i] = 0.25 * ri * (1.0 + si * s) * (2.0 * ri * r + si * s);
         *                      // 形状関数のs方向微分
         *                      dNds[i] = 0.25 * si * (1.0 + ri * r) * (ri * r + 2.0 * si * s);
         *                  }
         *                  // 節点4,6 : r方向辺上中点
         *                  foreach (int i in new int[]{ 4, 6})
         *                  {
         *                      // 節点の局所座標
         *                      double ri = n_pts[i][0];
         *                      double si = n_pts[i][1];
         *                      // 形状関数N
         *                      N[i] = 0.5 * (1.0 - r * r) * (1.0 + si * s);
         *                      // 形状関数のr方向微分
         *                      dNdr[i] = -1.0 * r * (1.0 + si * s);
         *                      // 形状関数のs方向微分
         *                      dNds[i] = 0.5 * si * (1.0 - r * r);
         *                  }
         *                  // 節点5,7 : s方向辺上中点
         *                  foreach (int i in new int[] { 5, 7 })
         *                  {
         *                      // 節点の局所座標
         *                      double ri = n_pts[i][0];
         *                      double si = n_pts[i][1];
         *                      // 形状関数N
         *                      N[i] = 0.5 * (1.0 + ri * r) * (1.0 - s * s);
         *                      // 形状関数のr方向微分
         *                      dNdr[i] = 0.5 * ri * (1.0 - s * s);
         *                      // 形状関数のs方向微分
         *                      dNds[i] = -1.0 * s * (1.0 + ri * r);
         *                  }
         *
         *                  // ヤコビアン行列
         *                  double j11;
         *                  double j12;
         *                  double j21;
         *                  double j22;
         *                  j11 = 0;
         *                  j12 = 0;
         *                  j21 = 0;
         *                  j22 = 0;
         *
         *                  //for (int i = 0; i < vertexCnt; i++)
         *                  //{
         *                  //    // 頂点の座標の微分
         *                  //    // 座標の形状関数は一次四角形のものを使用する
         *                  //    // 節点の局所座標
         *                  //    double ri = n_pts[i][0];
         *                  //    double si = n_pts[i][1];
         *                  //    double dNdr_1stOrder = 0.25 * ri * (1.0 + si * s);
         *                  //    double dNds_1stOrder = 0.25 * (1.0 + ri * r) * si;
         *                  //    j11 += dNdr_1stOrder * pp[i][0];
         *                  //    j12 += dNdr_1stOrder * pp[i][1];
         *                  //    j21 += dNds_1stOrder * pp[i][0];
         *                  //    j22 += dNds_1stOrder * pp[i][1];
         *                  //}
         *
         *                  for (int i = 0; i < nno; i++)
         *                  {
         *                      j11 += dNdr[i] * pp[i][0];
         *                      j12 += dNdr[i] * pp[i][1];
         *                      j21 += dNds[i] * pp[i][0];
         *                      j22 += dNds[i] * pp[i][1];
         *                  }
         *                  // ヤコビアン
         *                  double detj = j11 * j22 - j12 * j21;
         *                  detjsum += detj * weight;
         *                  //System.Diagnostics.Debug.WriteLine("det:{0}", detj);
         *
         *                  // gradr[0] : gradrのx成分 grad[1] : gradrのy成分
         *                  // grads[0] : gradsのx成分 grads[1] : gradsのy成分
         *                  double[] gradr = new double[2];
         *                  double[] grads = new double[2];
         *                  gradr[0] =   j22 / detj;
         *                  gradr[1] = - j21 / detj;
         *                  grads[0] = - j12 / detj;
         *                  grads[1] =   j11 / detj;
         *
         *                  // 形状関数のx, y方向微分
         *                  double[,] dNdX = new double[ndim, nno];
         *                  for (int i = 0; i < nno; i++)
         *                  {
         *                      for (int direction = 0; direction < ndim; direction++)
         *                      {
         *                          dNdX[direction, i] = dNdr[i] * gradr[direction] + dNds[i] * grads[direction];
         *                      }
         *                  }
         *
         *                  // 汎関数
         *                  double functional = media_P[0, 0] * dNdX[1, ino] * dNdX[1, jno] + media_P[1, 1] * dNdX[0, ino] * dNdX[0, jno]
         *                                   - k0 * k0 * media_Q[2, 2] * N[ino] * N[jno];
         *                  emat[ino, jno] += detj * weight * functional;
         *              }
         *          }
         *          //System.Diagnostics.Debug.WriteLine("detsum: {0}", detjsum);
         *      }
         *  }
         *
         *  // 要素剛性行列にマージする
         *  for (int ino = 0; ino < nno; ino++)
         *  {
         *      int iNodeNumber = no_c[ino];
         *      if (ForceNodeNumberH.ContainsKey(iNodeNumber)) continue;
         *      int inoGlobal = toSorted[iNodeNumber];
         *      for (int jno = 0; jno < nno; jno++)
         *      {
         *          int jNodeNumber = no_c[jno];
         *          if (ForceNodeNumberH.ContainsKey(jNodeNumber)) continue;
         *          int jnoGlobal = toSorted[jNodeNumber];
         *
         *          mat[inoGlobal, jnoGlobal] += emat[ino, jno];
         *      }
         *  }
         * }
         */
        /// <summary>
        /// ヘルムホルツ方程式に対する有限要素マトリクス作成
        /// </summary>
        /// <param name="waveLength">波長</param>
        /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param>
        /// <param name="element">有限要素</param>
        /// <param name="Nodes">節点リスト</param>
        /// <param name="Medias">媒質リスト</param>
        /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param>
        /// <param name="WGStructureDv">導波路構造区分</param>
        /// <param name="WaveModeDv">計算する波のモード区分</param>
        /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param>
        /// <param name="mat">マージされる全体行列(clapack使用時)</param>
        /// <param name="mat_cc">マージされる全体行列(DelFEM使用時)</param>
        /// <param name="res_c">マージされる残差ベクトル(DelFEM使用時)</param>
        /// <param name="tmpBuffer">一時バッファ(DelFEM使用時)</param>
        public static void AddElementMat(double waveLength,
                                         Dictionary <int, int> toSorted,
                                         FemElement element,
                                         IList <FemNode> Nodes,
                                         MediaInfo[] Medias,
                                         Dictionary <int, bool> ForceNodeNumberH,
                                         FemSolver.WGStructureDV WGStructureDv,
                                         FemSolver.WaveModeDV WaveModeDv,
                                         double waveguideWidthForEPlane,
                                         ref MyComplexMatrix mat,
                                         ref DelFEM4NetMatVec.CZMatDia_BlkCrs_Ptr mat_cc,
                                         ref DelFEM4NetMatVec.CZVector_Blk_Ptr res_c,
                                         ref int[] tmpBuffer)
        {
            // 定数
            const double pi = Constants.pi;
            const double c0 = Constants.c0;
            // 波数
            double k0 = 2.0 * pi / waveLength;
            // 角周波数
            double omega = k0 * c0;

            // 要素頂点数
            //const int vertexCnt = Constants.QuadVertexCnt; //4;
            // 要素内節点数
            const int nno = Constants.QuadNodeCnt_SecondOrder_Type2; //8;  // 2次セレンディピティ
            // 座標次元数
            const int ndim = Constants.CoordDim2D;                   //2;

            int[]     nodeNumbers = element.NodeNumbers;
            int[]     no_c        = new int[nno];
            MediaInfo media       = Medias[element.MediaIndex];

            double[,] media_P = null;
            double[,] media_Q = null;
            // ヘルムホルツ方程式のパラメータP,Qを取得する
            FemSolver.GetHelmholtzMediaPQ(
                k0,
                media,
                WGStructureDv,
                WaveModeDv,
                waveguideWidthForEPlane,
                out media_P,
                out media_Q);

            // 節点座標(IFの都合上配列の配列形式の2次元配列を作成)
            double[][] pp = new double[nno][];
            for (int ino = 0; ino < nno; ino++)
            {
                int     nodeNumber = nodeNumbers[ino];
                int     nodeIndex  = nodeNumber - 1;
                FemNode node       = Nodes[nodeIndex];

                no_c[ino] = nodeNumber;
                pp[ino]   = new double[ndim];
                for (int n = 0; n < ndim; n++)
                {
                    pp[ino][n] = node.Coord[n];
                }
            }

            // 四角形の辺の長さを求める
            double[] le = new double[4];
            le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]);
            le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]);
            le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]);
            le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]);
            System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit);
            System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit);
            double lx = le[0];
            double ly = le[1];

            // 要素節点座標( 局所r,s成分 )
            //        s
            //        |
            //    3+  6  +2
            //    |   |   |
            // ---7---+---5-->r
            //    |   |   |
            //    0+  4  +1
            //        |
            //
            double[][] n_pts =
            {
                // r, s
                new double[] { -1.0, -1.0 },    //0
                new double[] {  1.0, -1.0 },    //1
                new double[] {  1.0,  1.0 },    //2
                new double[] { -1.0,  1.0 },    //3
                new double[] {    0, -1.0 },    //4
                new double[] {  1.0,    0 },    //5
                new double[] {    0,  1.0 },    //6
                new double[] { -1.0,    0 },    //7
            };

            // Ni = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7
            double[,] Ni_a = new double[nno, 8];
            for (int i = 0; i < 4; i++)
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                Ni_a[i, 0] = 0.25 * ri * ri * si;
                Ni_a[i, 1] = 0.25 * ri * ri;
                Ni_a[i, 2] = 0.0;
                Ni_a[i, 3] = 0.25 * ri * si;
                Ni_a[i, 4] = 0.25 * ri * si * si;
                Ni_a[i, 5] = 0.25 * si * si;
                Ni_a[i, 6] = 0.0;
                Ni_a[i, 7] = -0.25;
            }
            foreach (int i in new int[] { 4, 6 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                Ni_a[i, 0] = -0.5 * si;
                Ni_a[i, 1] = -0.5;
                Ni_a[i, 2] = 0.0;
                Ni_a[i, 3] = 0.0;
                Ni_a[i, 4] = 0.0;
                Ni_a[i, 5] = 0.0;
                Ni_a[i, 6] = 0.5 * si;
                Ni_a[i, 7] = 0.5;
            }
            foreach (int i in new int[] { 5, 7 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                Ni_a[i, 0] = 0.0;
                Ni_a[i, 1] = 0.0;
                Ni_a[i, 2] = 0.5 * ri;
                Ni_a[i, 3] = 0.0;
                Ni_a[i, 4] = -0.5 * ri;
                Ni_a[i, 5] = -0.5;
                Ni_a[i, 6] = 0.0;
                Ni_a[i, 7] = 0.5;
            }

            // dNidr = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7
            double[,] dNidr_a = new double[nno, 8];
            for (int i = 0; i < 4; i++)
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNidr_a[i, 0] = 0.0;
                dNidr_a[i, 1] = 0.0;                       // r^2
                dNidr_a[i, 2] = 0.25 * 2.0 * ri * ri;      // r
                dNidr_a[i, 3] = 0.25 * 2.0 * ri * ri * si; // rs
                dNidr_a[i, 4] = 0.0;
                dNidr_a[i, 5] = 0.25 * ri * si * si;       // s^2
                dNidr_a[i, 6] = 0.25 * ri * si;            // s
                dNidr_a[i, 7] = 0.0;                       //1
            }
            foreach (int i in new int[] { 4, 6 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNidr_a[i, 0] = 0.0;
                dNidr_a[i, 1] = 0.0;  // r^2
                dNidr_a[i, 2] = -1.0; // r
                dNidr_a[i, 3] = -si;  // rs
                dNidr_a[i, 4] = 0.0;
                dNidr_a[i, 5] = 0.0;  // s^2
                dNidr_a[i, 6] = 0.0;  // s
                dNidr_a[i, 7] = 0.0;  // 1
            }
            foreach (int i in new int[] { 5, 7 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNidr_a[i, 0] = 0.0;
                dNidr_a[i, 1] = 0.0;       // r^2
                dNidr_a[i, 2] = 0.0;       // r
                dNidr_a[i, 3] = 0.0;       // rs
                dNidr_a[i, 4] = 0.0;
                dNidr_a[i, 5] = -0.5 * ri; // s^2
                dNidr_a[i, 6] = 0.0;       // s
                dNidr_a[i, 7] = 0.5 * ri;  // 1
            }

            // dNids = a0(r^2*s) + a1(r^2) + a2(r) + a3(rs) + a4(rs^2) + a5(s^2) + a6(s) + a7
            double[,] dNids_a = new double[nno, 8];
            for (int i = 0; i < 4; i++)
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNids_a[i, 0] = 0.0;
                dNids_a[i, 1] = 0.25 * ri * ri * si;       // r^2
                dNids_a[i, 2] = 0.25 * ri * si;            // r
                dNids_a[i, 3] = 0.25 * 2.0 * ri * si * si; // rs
                dNids_a[i, 4] = 0.0;
                dNids_a[i, 5] = 0.0;                       // s^2
                dNids_a[i, 6] = 0.25 * 2.0 * si * si;      // s
                dNids_a[i, 7] = 0.0;                       //1
            }
            foreach (int i in new int[] { 4, 6 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNids_a[i, 0] = 0.0;
                dNids_a[i, 1] = -0.5 * si; // r^2
                dNids_a[i, 2] = 0.0;       // r
                dNids_a[i, 3] = 0.0;       // rs
                dNids_a[i, 4] = 0.0;
                dNids_a[i, 5] = 0.0;       // s^2
                dNids_a[i, 6] = 0.0;       // s
                dNids_a[i, 7] = 0.5 * si;  //1
            }
            foreach (int i in new int[] { 5, 7 })
            {
                // 節点の局所座標
                double ri = n_pts[i][0];
                double si = n_pts[i][1];
                dNids_a[i, 0] = 0.0;
                dNids_a[i, 1] = 0.0;  // r^2
                dNids_a[i, 2] = 0.0;  // r
                dNids_a[i, 3] = -ri;  // rs
                dNids_a[i, 4] = 0.0;
                dNids_a[i, 5] = 0.0;  // s^2
                dNids_a[i, 6] = -1.0; // s
                dNids_a[i, 7] = 0.0;  //1
            }

            // ∫dN/dndN/dn dxdy
            //     integralDNDX[n, ino, jno]  n = 0 --> ∫dN/dxdN/dx dxdy
            //                                n = 1 --> ∫dN/dydN/dy dxdy
            double[, ,] integralDNDX = new double[ndim, nno, nno];
            // ∫N N dxdy
            double[,] integralN = new double[nno, nno];
            for (int ino = 0; ino < nno; ino++)
            {
                for (int jno = 0; jno < nno; jno++)
                {
                    integralN[ino, jno] = lx * ly / 4.0 *
                                          (
                        // r^4s^2
                        4.0 / 15.0 * Ni_a[ino, 0] * Ni_a[jno, 0]
                        // r^2s^2
                        + 4.0 / 9.0 * (Ni_a[ino, 6] * Ni_a[jno, 0] + Ni_a[ino, 5] * Ni_a[jno, 1] + Ni_a[ino, 4] * Ni_a[jno, 2] + Ni_a[ino, 3] * Ni_a[jno, 3]
                                       + Ni_a[ino, 2] * Ni_a[jno, 4] + Ni_a[ino, 1] * Ni_a[jno, 5] + Ni_a[ino, 0] * Ni_a[jno, 6])
                        // r^4
                        + 4.0 / 5.0 * Ni_a[ino, 1] * Ni_a[jno, 1]
                        // r^2
                        + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 1] + Ni_a[ino, 2] * Ni_a[jno, 2] + Ni_a[ino, 1] * Ni_a[jno, 7])
                        // r^2s^4
                        + 4.0 / 15.0 * Ni_a[ino, 4] * Ni_a[jno, 4]
                        // s^4
                        + 4.0 / 5.0 * Ni_a[ino, 5] * Ni_a[jno, 5]
                        // s^2
                        + 4.0 / 3.0 * (Ni_a[ino, 7] * Ni_a[jno, 5] + Ni_a[ino, 6] * Ni_a[jno, 6] + Ni_a[ino, 5] * Ni_a[jno, 7])
                        // 1
                        + 4.0 * Ni_a[ino, 7] * Ni_a[jno, 7]
                                          );
                    integralDNDX[0, ino, jno] = ly / lx *
                                                (
                        // r^4s^2
                        4.0 / 15.0 * dNidr_a[ino, 0] * dNidr_a[jno, 0]
                        // r^2s^2
                        + 4.0 / 9.0 * (dNidr_a[ino, 6] * dNidr_a[jno, 0] + dNidr_a[ino, 5] * dNidr_a[jno, 1] + dNidr_a[ino, 4] * dNidr_a[jno, 2]
                                       + dNidr_a[ino, 3] * dNidr_a[jno, 3]
                                       + dNidr_a[ino, 2] * dNidr_a[jno, 4] + dNidr_a[ino, 1] * dNidr_a[jno, 5] + dNidr_a[ino, 0] * dNidr_a[jno, 6])
                        // r^4
                        + 4.0 / 5.0 * dNidr_a[ino, 1] * dNidr_a[jno, 1]
                        // r^2
                        + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 1] + dNidr_a[ino, 2] * dNidr_a[jno, 2] + dNidr_a[ino, 1] * dNidr_a[jno, 7])
                        // r^2s^4
                        + 4.0 / 15.0 * dNidr_a[ino, 4] * dNidr_a[jno, 4]
                        // s^4
                        + 4.0 / 5.0 * dNidr_a[ino, 5] * dNidr_a[jno, 5]
                        // s^2
                        + 4.0 / 3.0 * (dNidr_a[ino, 7] * dNidr_a[jno, 5] + dNidr_a[ino, 6] * dNidr_a[jno, 6] + dNidr_a[ino, 5] * dNidr_a[jno, 7])
                        // 1
                        + 4.0 * dNidr_a[ino, 7] * dNidr_a[jno, 7]
                                                );
                    integralDNDX[1, ino, jno] = lx / ly *
                                                (
                        // r^4s^2
                        4.0 / 15.0 * dNids_a[ino, 0] * dNids_a[jno, 0]
                        // r^2s^2
                        + 4.0 / 9.0 * (dNids_a[ino, 6] * dNids_a[jno, 0] + dNids_a[ino, 5] * dNids_a[jno, 1] + dNids_a[ino, 4] * dNids_a[jno, 2]
                                       + dNids_a[ino, 3] * dNids_a[jno, 3]
                                       + dNids_a[ino, 2] * dNids_a[jno, 4] + dNids_a[ino, 1] * dNids_a[jno, 5] + dNids_a[ino, 0] * dNids_a[jno, 6])
                        // r^4
                        + 4.0 / 5.0 * dNids_a[ino, 1] * dNids_a[jno, 1]
                        // r^2
                        + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 1] + dNids_a[ino, 2] * dNids_a[jno, 2] + dNids_a[ino, 1] * dNids_a[jno, 7])
                        // r^2s^4
                        + 4.0 / 15.0 * dNids_a[ino, 4] * dNids_a[jno, 4]
                        // s^4
                        + 4.0 / 5.0 * dNids_a[ino, 5] * dNids_a[jno, 5]
                        // s^2
                        + 4.0 / 3.0 * (dNids_a[ino, 7] * dNids_a[jno, 5] + dNids_a[ino, 6] * dNids_a[jno, 6] + dNids_a[ino, 5] * dNids_a[jno, 7])
                        // 1
                        + 4.0 * dNids_a[ino, 7] * dNids_a[jno, 7]
                                                );
                }
            }

            // 要素剛性行列を作る
            double[,] emat = new double[nno, nno];
            for (int ino = 0; ino < nno; ino++)
            {
                for (int jno = 0; jno < nno; jno++)
                {
                    emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno]
                                     - k0 * k0 * media_Q[2, 2] * integralN[ino, jno];
                }
            }

            // 要素剛性行列にマージする
            if (mat_cc != null)
            {
                // 全体節点番号→要素内節点インデックスマップ
                Dictionary <uint, int> inoGlobalDic = new Dictionary <uint, int>();
                for (int ino = 0; ino < nno; ino++)
                {
                    int iNodeNumber = no_c[ino];
                    if (ForceNodeNumberH.ContainsKey(iNodeNumber))
                    {
                        continue;
                    }
                    uint inoGlobal = (uint)toSorted[iNodeNumber];
                    inoGlobalDic.Add(inoGlobal, ino);
                }
                // マージ用の節点番号リスト
                uint[] no_c_tmp = inoGlobalDic.Keys.ToArray <uint>();
                // マージする節点数("col"と"row"のサイズ)
                uint ncolrow_tmp = (uint)no_c_tmp.Length;
                // Note:
                //   要素の節点がすべて強制境界の場合がある.その場合は、ncolrow_tmpが0
                if (ncolrow_tmp > 0)
                {
                    // マージする要素行列
                    DelFEM4NetCom.Complex[] ematBuffer = new DelFEM4NetCom.Complex[ncolrow_tmp * ncolrow_tmp];
                    for (int ino_tmp = 0; ino_tmp < ncolrow_tmp; ino_tmp++)
                    {
                        int ino = inoGlobalDic[no_c_tmp[ino_tmp]];
                        for (int jno_tmp = 0; jno_tmp < ncolrow_tmp; jno_tmp++)
                        {
                            int    jno   = inoGlobalDic[no_c_tmp[jno_tmp]];
                            double value = emat[ino, jno];
                            DelFEM4NetCom.Complex cvalueDelFEM = new DelFEM4NetCom.Complex(value, 0);
                            // ematBuffer[ino_tmp, jno_tmp] 横ベクトルを先に埋める(clapack方式でないことに注意)
                            ematBuffer[ino_tmp * ncolrow_tmp + jno_tmp] = cvalueDelFEM;
                        }
                    }
                    // 全体行列に要素行列をマージする
                    mat_cc.Mearge(ncolrow_tmp, no_c_tmp, ncolrow_tmp, no_c_tmp, 1, ematBuffer, ref tmpBuffer);
                }
            }
            else if (mat != null)
            {
                for (int ino = 0; ino < nno; ino++)
                {
                    int iNodeNumber = no_c[ino];
                    if (ForceNodeNumberH.ContainsKey(iNodeNumber))
                    {
                        continue;
                    }
                    int inoGlobal = toSorted[iNodeNumber];
                    for (int jno = 0; jno < nno; jno++)
                    {
                        int jNodeNumber = no_c[jno];
                        if (ForceNodeNumberH.ContainsKey(jNodeNumber))
                        {
                            continue;
                        }
                        int jnoGlobal = toSorted[jNodeNumber];

                        //mat[inoGlobal, jnoGlobal] += emat[ino, jno];
                        //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno];
                        // 実数部に加算する
                        //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno];
                        // バンドマトリクス対応
                        mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno];
                    }
                }
            }
        }
Example #9
0
        /// <summary>
        /// ヘルムホルツ方程式に対する有限要素マトリクス作成
        /// </summary>
        /// <param name="waveLength">波長</param>
        /// <param name="toSorted">ソートされた節点インデックス( 2D節点番号→ソート済みリストインデックスのマップ)</param>
        /// <param name="element">有限要素</param>
        /// <param name="Nodes">節点リスト</param>
        /// <param name="Medias">媒質リスト</param>
        /// <param name="ForceNodeNumberH">強制境界節点ハッシュ</param>
        /// <param name="WGStructureDv">導波路構造区分</param>
        /// <param name="WaveModeDv">計算する波のモード区分</param>
        /// <param name="waveguideWidthForEPlane">導波路幅(E面解析用)</param>
        /// <param name="mat">マージされる全体行列</param>
        public static void AddElementMat(double waveLength,
                                         Dictionary <int, int> toSorted,
                                         FemElement element,
                                         IList <FemNode> Nodes,
                                         MediaInfo[] Medias,
                                         Dictionary <int, bool> ForceNodeNumberH,
                                         FemSolver.WGStructureDV WGStructureDv,
                                         FemSolver.WaveModeDV WaveModeDv,
                                         double waveguideWidthForEPlane,
                                         ref MyComplexMatrix mat)
        {
            // 定数
            const double pi = Constants.pi;
            const double c0 = Constants.c0;
            // 波数
            double k0 = 2.0 * pi / waveLength;
            // 角周波数
            double omega = k0 * c0;

            // 要素頂点数
            //const int vertexCnt = Constants.QuadVertexCnt; //4;
            // 要素内節点数
            const int nno = Constants.QuadNodeCnt_FirstOrder; //4;  // 1次セレンディピティ
            // 座標次元数
            const int ndim = Constants.CoordDim2D;            //2;

            int[]     nodeNumbers = element.NodeNumbers;
            int[]     no_c        = new int[nno];
            MediaInfo media       = Medias[element.MediaIndex];

            double[,] media_P = null;
            double[,] media_Q = null;
            // ヘルムホルツ方程式のパラメータP,Qを取得する
            FemSolver.GetHelmholtzMediaPQ(
                k0,
                media,
                WGStructureDv,
                WaveModeDv,
                waveguideWidthForEPlane,
                out media_P,
                out media_Q);

            // 節点座標(IFの都合上配列の配列形式の2次元配列を作成)
            double[][] pp = new double[nno][];
            for (int ino = 0; ino < nno; ino++)
            {
                int     nodeNumber = nodeNumbers[ino];
                int     nodeIndex  = nodeNumber - 1;
                FemNode node       = Nodes[nodeIndex];

                no_c[ino] = nodeNumber;
                pp[ino]   = new double[ndim];
                for (int n = 0; n < ndim; n++)
                {
                    pp[ino][n] = node.Coord[n];
                }
            }

            // 四角形の辺の長さを求める
            double[] le = new double[4];
            le[0] = FemMeshLogic.GetDistance(pp[0], pp[1]);
            le[1] = FemMeshLogic.GetDistance(pp[1], pp[2]);
            le[2] = FemMeshLogic.GetDistance(pp[2], pp[3]);
            le[3] = FemMeshLogic.GetDistance(pp[3], pp[0]);
            System.Diagnostics.Debug.Assert(Math.Abs(le[0] - le[2]) < Constants.PrecisionLowerLimit);
            System.Diagnostics.Debug.Assert(Math.Abs(le[1] - le[3]) < Constants.PrecisionLowerLimit);
            double lx = le[0];
            double ly = le[1];

            // 要素節点座標( 局所r,s成分 )
            //        s
            //        |
            //    3+  +  +2
            //    |   |   |
            // ---+---+---+-->r
            //    |   |   |
            //    0+  +  +1
            //        |
            //
            double[][] n_pts =
            {
                // r, s
                new double[] { -1.0, -1.0 },    //0
                new double[] {  1.0, -1.0 },    //1
                new double[] {  1.0,  1.0 },    //2
                new double[] { -1.0,  1.0 },    //3
            };

            // ∫dN/dndN/dn dxdy
            //     integralDNDX[n, ino, jno]  n = 0 --> ∫dN/dxdN/dx dxdy
            //                                n = 1 --> ∫dN/dydN/dy dxdy
            double[, ,] integralDNDX = new double[ndim, nno, nno]
            {
                {
                    { 2.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx) },
                    { -2.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx) },
                    { -1.0 * ly / (6.0 * lx), 1.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx) },
                    { 1.0 * ly / (6.0 * lx), -1.0 * ly / (6.0 * lx), -2.0 * ly / (6.0 * lx), 2.0 * ly / (6.0 * lx) },
                },
                {
                    { 2.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly) },
                    { 1.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly) },
                    { -1.0 * lx / (6.0 * ly), -2.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly) },
                    { -2.0 * lx / (6.0 * ly), -1.0 * lx / (6.0 * ly), 1.0 * lx / (6.0 * ly), 2.0 * lx / (6.0 * ly) },
                }
            };
            // ∫N N dxdy
            double[,] integralN = new double[nno, nno]
            {
                { 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 },
                { 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0 },
                { 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0 },
                { 2.0 * lx * ly / 36.0, 1.0 * lx * ly / 36.0, 2.0 * lx * ly / 36.0, 4.0 * lx * ly / 36.0 },
            };

            // 要素剛性行列を作る
            double[,] emat = new double[nno, nno];
            for (int ino = 0; ino < nno; ino++)
            {
                for (int jno = 0; jno < nno; jno++)
                {
                    emat[ino, jno] = media_P[0, 0] * integralDNDX[1, ino, jno] + media_P[1, 1] * integralDNDX[0, ino, jno]
                                     - k0 * k0 * media_Q[2, 2] * integralN[ino, jno];
                }
            }

            // 要素剛性行列にマージする
            for (int ino = 0; ino < nno; ino++)
            {
                int iNodeNumber = no_c[ino];
                if (ForceNodeNumberH.ContainsKey(iNodeNumber))
                {
                    continue;
                }
                int inoGlobal = toSorted[iNodeNumber];
                for (int jno = 0; jno < nno; jno++)
                {
                    int jNodeNumber = no_c[jno];
                    if (ForceNodeNumberH.ContainsKey(jNodeNumber))
                    {
                        continue;
                    }
                    int jnoGlobal = toSorted[jNodeNumber];

                    //mat[inoGlobal, jnoGlobal] += emat[ino, jno];
                    //mat._body[inoGlobal + jnoGlobal * mat.RowSize] += emat[ino, jno];
                    // 実数部に加算する
                    //mat._body[inoGlobal + jnoGlobal * mat.RowSize].Real += emat[ino, jno];
                    // バンドマトリクス対応
                    mat._body[mat.GetBufferIndex(inoGlobal, jnoGlobal)].Real += emat[ino, jno];
                }
            }
        }