Example #1
0
        public void TestFastTreeTweedieFeaturizationInPipeline()
        {
            int dataPointCount = 200;
            var data           = SamplesUtils.DatasetUtils.GenerateFloatLabelFloatFeatureVectorSamples(dataPointCount).ToList();
            var dataView       = ML.Data.LoadFromEnumerable(data);

            dataView = ML.Data.Cache(dataView);

            var trainerOptions = new FastTreeTweedieTrainer.Options
            {
                NumberOfThreads            = 1,
                NumberOfTrees              = 10,
                NumberOfLeaves             = 4,
                MinimumExampleCountPerLeaf = 10,
                FeatureColumnName          = "Features",
                LabelColumnName            = "Label"
            };

            var options = new FastTreeTweedieFeaturizationEstimator.Options()
            {
                InputColumnName  = "Features",
                TreesColumnName  = "Trees",
                LeavesColumnName = "Leaves",
                PathsColumnName  = "Paths",
                TrainerOptions   = trainerOptions
            };

            var pipeline = ML.Transforms.FeaturizeByFastTreeTweedie(options)
                           .Append(ML.Transforms.Concatenate("CombinedFeatures", "Features", "Trees", "Leaves", "Paths"))
                           .Append(ML.Regression.Trainers.Sdca("Label", "CombinedFeatures"));
            var model      = pipeline.Fit(dataView);
            var prediction = model.Transform(dataView);
            var metrics    = ML.Regression.Evaluate(prediction);

            Assert.True(metrics.MeanAbsoluteError < 0.25);
            Assert.True(metrics.MeanSquaredError < 0.1);
        }
Example #2
0
        /// <summary>
        /// Create <see cref="FastTreeTweedieFeaturizationEstimator"/>, which uses <see cref="FastTreeTweedieTrainer"/> to train <see cref="TreeEnsembleModelParameters"/> to create tree-based features.
        /// </summary>
        /// <param name="catalog">The context <see cref="TransformsCatalog"/> to create <see cref="FastTreeTweedieFeaturizationEstimator"/>.</param>
        /// <param name="options">The options to configure <see cref="FastTreeTweedieFeaturizationEstimator"/>. See <see cref="FastTreeTweedieFeaturizationEstimator.Options"/> and
        /// <see cref="TreeEnsembleFeaturizationEstimatorBase.OptionsBase"/> for available settings.</param>
        /// <example>
        /// <format type="text/markdown">
        /// <![CDATA[
        /// [!code-csharp[FeaturizeByFastTreeTweedie](~/../docs/samples/docs/samples/Microsoft.ML.Samples/Dynamic/Transforms/TreeFeaturization/FastTreeTweedieFeaturizationWithOptions.cs)]
        /// ]]>
        /// </format>
        /// </example>
        public static FastTreeTweedieFeaturizationEstimator FeaturizeByFastTreeTweedie(this TransformsCatalog catalog,
                                                                                       FastTreeTweedieFeaturizationEstimator.Options options)
        {
            Contracts.CheckValue(catalog, nameof(catalog));
            var env = CatalogUtils.GetEnvironment(catalog);

            return(new FastTreeTweedieFeaturizationEstimator(env, options));
        }
        // This example requires installation of additional NuGet package
        // <a href="https://www.nuget.org/packages/Microsoft.ML.FastTree/">Microsoft.ML.FastTree</a>.
        public static void Example()
        {
            // Create a new context for ML.NET operations. It can be used for
            // exception tracking and logging, as a catalog of available operations
            // and as the source of randomness. Setting the seed to a fixed number
            // in this example to make outputs deterministic.
            var mlContext = new MLContext(seed: 0);

            // Create a list of training data points.
            var dataPoints = GenerateRandomDataPoints(100).ToList();

            // Convert the list of data points to an IDataView object, which is
            // consumable by ML.NET API.
            var dataView = mlContext.Data.LoadFromEnumerable(dataPoints);

            // ML.NET doesn't cache data set by default. Therefore, if one reads a
            // data set from a file and accesses it many times, it can be slow due
            // to expensive featurization and disk operations. When the considered
            // data can fit into memory, a solution is to cache the data in memory.
            // Caching is especially helpful when working with iterative algorithms
            // which needs many data passes.
            dataView = mlContext.Data.Cache(dataView);

            // Define input and output columns of tree-based featurizer.
            string labelColumnName   = nameof(DataPoint.Label);
            string featureColumnName = nameof(DataPoint.Features);
            string treesColumnName   = nameof(TransformedDataPoint.Trees);
            string leavesColumnName  = nameof(TransformedDataPoint.Leaves);
            string pathsColumnName   = nameof(TransformedDataPoint.Paths);

            // Define the configuration of the trainer used to train a tree-based
            // model.
            var trainerOptions = new FastTreeTweedieTrainer.Options
            {
                // Only use 80% of features to reduce over-fitting.
                FeatureFraction = 0.8,
                // Create a simpler model by penalizing usage of new features.
                FeatureFirstUsePenalty = 0.1,
                // Reduce the number of trees to 3.
                NumberOfTrees = 3,
                // Number of leaves per tree.
                NumberOfLeaves    = 6,
                LabelColumnName   = labelColumnName,
                FeatureColumnName = featureColumnName
            };

            // Define the tree-based featurizer's configuration.
            var options = new FastTreeTweedieFeaturizationEstimator.Options
            {
                InputColumnName  = featureColumnName,
                TreesColumnName  = treesColumnName,
                LeavesColumnName = leavesColumnName,
                PathsColumnName  = pathsColumnName,
                TrainerOptions   = trainerOptions
            };

            // Define the featurizer.
            var pipeline = mlContext.Transforms.FeaturizeByFastTreeTweedie(
                options);

            // Train the model.
            var model = pipeline.Fit(dataView);

            // Create testing data. Use different random seed to make it different
            // from training data.
            var transformed = model.Transform(dataView);

            // Convert IDataView object to a list. Each element in the resulted list
            // corresponds to a row in the IDataView.
            var transformedDataPoints = mlContext.Data.CreateEnumerable <
                TransformedDataPoint>(transformed, false).ToList();

            // Print out the transformation of the first 3 data points.
            for (int i = 0; i < 3; ++i)
            {
                var dataPoint            = dataPoints[i];
                var transformedDataPoint = transformedDataPoints[i];
                Console.WriteLine("The original feature vector [" + String.Join(",",
                                                                                dataPoint.Features) + "] is transformed to three different " +
                                  "tree-based feature vectors:");

                Console.WriteLine("  Trees' output values: [" + String.Join(",",
                                                                            transformedDataPoint.Trees) + "].");

                Console.WriteLine("  Leave IDs' 0-1 representation: [" + String
                                  .Join(",", transformedDataPoint.Leaves) + "].");

                Console.WriteLine("  Paths IDs' 0-1 representation: [" + String
                                  .Join(",", transformedDataPoint.Paths) + "].");
            }

            // Expected output:
            //   The original feature vector [1.543569,1.494266,1.284405] is
            //   transformed to three different tree-based feature vectors:
            //     Trees' output values: [-0.05652997,-0.02312196,-0.01179363].
            //     Leave IDs' 0-1 representation: [0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0].
            //     Paths IDs' 0-1 representation: [1,0,0,0,0,1,1,0,1,0,1,1,0,0,0].
            //   The original feature vector [0.764918,1.11206,0.648211] is
            //   transformed to three different tree-based feature vectors:
            //     Trees' output values: [-0.1933938,-0.1042738,-0.2312837].
            //     Leave IDs' 0-1 representation: [0,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0].
            //     Paths IDs' 0-1 representation: [1,1,1,0,0,1,1,0,0,0,1,0,0,0,0].
            //   The original feature vector [1.251254,1.269456,1.444864] is
            //   transformed to three different tree-based feature vectors:
            //     Trees' output values: [-0.05652997,-0.06082304,-0.04528879].
            //     Leave IDs' 0-1 representation: [0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0].
            //     Paths IDs' 0-1 representation: [1,0,0,0,0,1,1,0,1,0,1,1,1,0,1].
        }