public string saveEmployee(Image newImage, string name, string middleName, string lastName, string email, FaceRecognizerMethode faceRecognizerMethode)
        {
            unitOfWork = new GenericUnitOfWork();
            GenericRepository<Employee> employeeRepo = unitOfWork.GetRepoInstance<Employee>();

            Employee employee = null;
            try
            {

                employee = (employeeRepo.GetAllRecords().Where<Employee>(e => e.email == email)).First<Employee>();
            }
            catch
            {
                Debug.WriteLine("Nuevo usuario");
            }

            //Add Employee if not exist. The email is unique
            if (employee == null)
            {
                employee = new Employee { name = name, middleName = middleName, lastName = lastName, email = email };
                employeeRepo.Add(employee);
                unitOfWork.SaveChanges();
            }

            //I save the image with a guid as a name
            GenericRepository<DistanceResult> distanceResultRepo = unitOfWork.GetRepoInstance<DistanceResult>();
            Guid guid = Guid.NewGuid();

            var inputImage = new Image<Bgr, Byte>(new Bitmap(newImage));
            Rectangle[] rectangleFace = detection(inputImage, pathXMLHaarcascade);

            //The function detection(..) can extract N faces

            if (rectangleFace.Length <= 0)
            {
                return Result.NoDetected.ToString();
            }
            else if (rectangleFace.Length > 1)
            {
                return Result.MultipleFacesDetected.ToString();
            }
            else
            {
                Image<Gray, byte> grayFrame = toGrayEqualizeFrame(inputImage);

                Image<Gray, Byte> faceEMGUCV = formatRectangleFaces(grayFrame.ToBitmap(), rectangleFace[0]);

                faceEMGUCV._EqualizeHist();

                faceEMGUCV.Save(pathImg + @"\" + guid.ToString()+".Jpeg");

                FaceRecognizer faceRecognition;

                switch (faceRecognizerMethode.ToString())
                {
                    case "EigenFaceRecognizerMethode": faceRecognition = new EigenFaceRecognizer(numComponentsEigen, thresholdEigen); //try catch aca
                        break;
                    case "FisherFaceRecognizerMethode": faceRecognition = new FisherFaceRecognizer(numComponentsFisher, thresholdFisher);
                        break;
                    case "LBPHFaceRecognizerMethode": faceRecognition = new LBPHFaceRecognizer(radiusLBPH, neighborsLBPH, gridXLBPH, gridYLBPH, thresholdLBPH);
                        break;
                    default: return null;
                };

                double distance = 2;

                //Save register
                DistanceResult dist = new DistanceResult();
                dist.algorithm = RecognizeBLL.FaceRecognizerMethode.FisherFaceRecognizerMethode.ToString();
                dist.employeeId = employee.employeeId;
                dist.photoName = guid.ToString();
                dist.distance = distance;
                distanceResultRepo.Add(dist);

                unitOfWork.SaveChanges();

                int lengthArrays = distanceResultRepo.GetAllRecords().Count();
                imagesDB = new Image<Gray, Byte>[lengthArrays];
                labels = new int[lengthArrays];
                int i = 0;
                foreach (DistanceResult di in distanceResultRepo.GetAllRecords())
                {
                    //This is to recalculate the faceRecognition and save it, but I think is not necesari declare imageDB and labels as global
                    imagesDB[i] = new Image<Gray, Byte>(pathImg + @"\" + di.photoName + ".Jpeg");
                    labels[i] = di.employeeId;
                    i++;
                }

                if (employeeRepo.GetAllRecords().Count() > 1)
                {
                    faceRecognition.Train(imagesDB, labels);
                    faceRecognition.Save(pathImg + @"\" + "TrainingSet");
                }
                return Result.Saved.ToString();
            }
            //return Result.Error.ToString();
        }
        public EmployeeStructure[] recognizeMultipleFaces(Image newImage, FaceRecognizerMethode faceRecognizerMethode)
        {
            var inputImage = new Image<Bgr, Byte>(new Bitmap(newImage));
            Rectangle[] rectangleFace = detection(inputImage, this.pathXMLHaarcascade);
            EmployeeStructure[] employeeStructure;

            if (rectangleFace.Length <= 0)
            {
                employeeStructure = new EmployeeStructure[0];
                employeeStructure[0].result = Result.NoDetected.ToString();
                return employeeStructure;
            }
            else
            {

                Image<Gray, byte> grayFrame = toGrayEqualizeFrame(inputImage);
                employeeStructure = new EmployeeStructure[rectangleFace.Length];

                FaceRecognizer faceRecognition;

                switch (faceRecognizerMethode.ToString())
                {
                    case "EigenFaceRecognizerMethode": faceRecognition = new EigenFaceRecognizer(numComponentsEigen, thresholdEigen); //try catch aca
                        break;
                    case "FisherFaceRecognizerMethode": faceRecognition = new FisherFaceRecognizer(numComponentsFisher, thresholdFisher);
                        break;
                    case "LBPHFaceRecognizerMethode": faceRecognition = new LBPHFaceRecognizer(radiusLBPH, neighborsLBPH, gridXLBPH, gridYLBPH, thresholdLBPH);
                        break;
                    default: faceRecognition = new EigenFaceRecognizer(numComponentsEigen, thresholdEigen);
                        break;
                };

                faceRecognition.Load(pathImg + @"\" + "TrainingSet");

                Parallel.For(0, rectangleFace.Length, i =>
                {
                    Image<Gray, byte> faceEMGUCV = formatRectangleFaces(grayFrame.ToBitmap(), rectangleFace[i]);

                    FaceRecognizer.PredictionResult ER = faceRecognition.Predict(faceEMGUCV);

                    if (ER.Label != -1 /*&& ER.Distance > thresholdEigen*/)
                    {
                        int label = ER.Label;

                        GenericRepository<Employee> emplyeeRepo = unitOfWork.GetRepoInstance<Employee>();
                        Employee em = emplyeeRepo.GetFirstOrDefault(label);

                        employeeStructure[i] = new EmployeeStructure(Result.Recognized.ToString(), em.name, em.middleName, em.lastName, em.email, rectangleFace[0].X, rectangleFace[0].Y, rectangleFace[0].Width, rectangleFace[0].Height);
                    }
                    employeeStructure[i].result = Result.Unknown.ToString();

                });

                return employeeStructure;
            }
        }