private void EvolutionaryThread()
        {
            m_exp = CreateExperiment();
            var idgen = new IdGenerator();

            m_evoAlg = new EvolutionAlgorithm(
                new Population(idgen,
                               GenomeFactory.CreateGenomeList(m_exp.DefaultNeatParameters, idgen,
                                                              m_exp.InputNeuronCount, m_exp.OutputNeuronCount,
                                                              m_exp.DefaultNeatParameters.pInitialPopulationInterconnections,
                                                              NeatExpParams.PopulationSize)),
                m_exp.PopulationEvaluator, m_exp.DefaultNeatParameters);

            while (!m_shouldQuit)
            {
                Console.WriteLine("::::: Performing one generation");
                Console.WriteLine();

                m_evoAlg.PerformOneGeneration();

                if (NeatExpParams.SaveFitnessGrowth)
                {
                    m_eaLogger.WriteLine(String.Format("{0,-10} {1,-20} {2,-20} {3,-20}",
                                                       m_evoAlg.Generation,
                                                       m_evoAlg.BestGenome.Fitness,
                                                       m_evoAlg.Population.MeanFitness, m_evoAlg.Population.AvgComplexity));
                }

                m_curBestGenome = m_evoAlg.BestGenome as NeatGenome;
                if (m_evoAlg.BestGenome.Fitness > m_overalBestFitness)
                {
                    m_overalBestFitness = m_evoAlg.BestGenome.Fitness;
                    m_overalBestGenome  = m_curBestGenome;

                    if (NeatExpParams.SaveEachGenerationChampionCPPN)
                    {
                        try
                        {
                            var doc = new XmlDocument();
                            XmlGenomeWriterStatic.Write(doc, (NeatGenome)m_evoAlg.BestGenome);
                            var oFileInfo = new FileInfo(Path.Combine(
                                                             NeatExpParams.EALogDir, String.Format("BestIndividual-{0}-{1}.xml", MyUnum, m_evoAlg.Generation.ToString())));
                            doc.Save(oFileInfo.FullName);
                        }
                        catch
                        {
                        }
                    }
                }

                if (EAUpdate != null)
                {
                    EAUpdate.Invoke(this, EventArgs.Empty);
                }
            }
        }
Example #2
0
        public NoveltyThread(JSPopulationEvaluator jsPop, AssessGenotypeFunction assess, int popSize)
        {
            //save our objects for executing later!
            popEval        = jsPop;
            populationSize = popSize;

            autoEvent = new AutoResetEvent(false);


            waitNextTime = true;

            novelThread = new Thread(delegate()
            {
                autoEvent.WaitOne();

                //we'll start by testing with 0 parents, and popsize of 15 yay!
                noveltyRun = EvolutionManager.SharedEvolutionManager.initializeEvolutionAlgorithm(popEval, populationSize, assess);

                //let our algoirhtm know we want to do novelty gosh darnit
                if (noveltyRun.multiobjective != null)
                {
                    noveltyRun.multiobjective.doNovelty = true;
                }

                //we make sure we don't wait in this loop, since we just got started!
                waitNextTime = false;

                while (true)
                {
                    //this will cause us to pause!
                    if (waitNextTime)
                    {
                        waitNextTime = false;
                        autoEvent.WaitOne();
                    }
                    // Start the stopwatch we'll use to measure eval performance
                    Stopwatch sw = Stopwatch.StartNew();

                    //run the generation
                    noveltyRun.PerformOneGeneration();

                    // Stop the stopwatch
                    sw.Stop();

                    // Report the results
                    Console.WriteLine("Time used per gen (float): {0} ms", sw.Elapsed.TotalMilliseconds);
                    Console.WriteLine("Time used per gen (rounded): {0} ms", sw.ElapsedMilliseconds);
                }
            });

            novelThread.Start();
        }
        public void oneGeneration(int currentGeneration)
        {
            DateTime dt = DateTime.Now;

            ea.PerformOneGeneration();
            if (ea.BestGenome.RealFitness > maxFitness)
            {
                simExperiment.bestGenomeSoFar = (NeatGenome)ea.BestGenome;
                maxFitness = ea.BestGenome.RealFitness;
                doc        = new XmlDocument();
                XmlGenomeWriterStatic.Write(doc, (NeatGenome)ea.BestGenome);
                oFileInfo = new FileInfo(outputFolder + "bestGenome" + currentGeneration.ToString() + ".xml");
                doc.Save(oFileInfo.FullName);
            }
            //Console.WriteLine(ea.Generation.ToString() + " " + ea.BestGenome.RealFitness + " "  + ea.Population.GenomeList.Count + " " + (DateTime.Now.Subtract(dt)));
            // Schrum: Changed this to include fitness values from each environment: Mainly for FourTasks
            Console.WriteLine(ea.Generation.ToString() + " " + ea.BestGenome.RealFitness + " " + ea.Population.GenomeList.Count + " (" + string.Join(",", ea.BestGenome.Behavior.objectives) + ") " + (DateTime.Now.Subtract(dt)) + " " + ea.BestGenome.Behavior.modules + " " + ea.BestGenome.Behavior.cppnLinks + " " + ea.BestGenome.Behavior.substrateLinks);
            int gen_mult = 200;

            if (logging)
            {
                if (experiment.DefaultNeatParameters.noveltySearch && currentGeneration % gen_mult == 0)
                {
                    XmlDocument archiveout = new XmlDocument();

                    XmlPopulationWriter.WriteGenomeList(archiveout, ea.noveltyFixed.archive);
                    oFileInfo = new FileInfo(outputFolder + "archive.xml");
                    archiveout.Save(oFileInfo.FullName);
                }

                if ((experiment.DefaultNeatParameters.noveltySearch || experiment.DefaultNeatParameters.multiobjective) && currentGeneration % gen_mult == 0)
                {
                    XmlDocument popout = new XmlDocument();
                    if (!experiment.DefaultNeatParameters.multiobjective)
                    {
                        XmlPopulationWriter.Write(popout, ea.Population, ActivationFunctionFactory.GetActivationFunction("NullFn"));
                    }
                    else
                    {
                        XmlPopulationWriter.WriteGenomeList(popout, ea.multiobjective.population);
                    }

                    oFileInfo = new FileInfo(outputFolder + "population" + currentGeneration.ToString() + ".xml");
                    popout.Save(oFileInfo.FullName);
                }
                // Schrum: Added contents of objective array to log so individual environment scores can be seen in FourTasks domain
                // Also always print modules, cppn links, and substrate links
                logOutput.WriteLine(ea.Generation.ToString() + " " + (maxFitness).ToString() + " " + string.Join(" ", ea.BestGenome.Behavior.objectives) + " " + ea.BestGenome.Behavior.modules + " " + ea.BestGenome.Behavior.cppnLinks + " " + ea.BestGenome.Behavior.substrateLinks);
            }
        }
Example #4
0
        public void oneGeneration(int currentGeneration)
        {
            DateTime dt = DateTime.Now;

            ea.PerformOneGeneration();
            if (ea.BestGenome.RealFitness > maxFitness)
            {
                //simExperiment.bestGenomeSoFar = (NeatGenome)ea.BestGenome;
                maxFitness = ea.BestGenome.RealFitness;
                doc        = new XmlDocument();
                XmlGenomeWriterStatic.Write(doc, (NeatGenome)ea.BestGenome);
                oFileInfo = new FileInfo(outputFolder + "bestGenome" + currentGeneration.ToString() + ".xml");
                doc.Save(oFileInfo.FullName);
            }
            Console.WriteLine(ea.Generation.ToString() + " " + ea.BestGenome.RealFitness + " " + ea.Population.GenomeList.Count + " " + (DateTime.Now.Subtract(dt)));
            int gen_mult = 200;

            if (logging)
            {
                if (neatParams.noveltySearch && currentGeneration % gen_mult == 0)
                {
                    XmlDocument archiveout = new XmlDocument();

                    XmlPopulationWriter.WriteGenomeList(archiveout, ea.noveltyFixed.archive);
                    oFileInfo = new FileInfo(outputFolder + "archive.xml");
                    archiveout.Save(oFileInfo.FullName);
                }

                if ((neatParams.noveltySearch || neatParams.multiobjective) && currentGeneration % gen_mult == 0)
                {
                    XmlDocument popout = new XmlDocument();
                    if (!neatParams.multiobjective)
                    {
                        XmlPopulationWriter.Write(popout, ea.Population, ActivationFunctionFactory.GetActivationFunction("NullFn"));
                    }
                    else
                    {
                        XmlPopulationWriter.WriteGenomeList(popout, ea.multiobjective.population);
                    }

                    oFileInfo = new FileInfo(outputFolder + "population" + currentGeneration.ToString() + ".xml");
                    popout.Save(oFileInfo.FullName);
                }

                logOutput.WriteLine(ea.Generation.ToString() + " " + (maxFitness).ToString());
            }
        }
Example #5
0
        //private static Random random;

        public static void Main(string[] args)
        {
            Util.Initialize(args[0]);
            var         idgen      = new IdGenerator();
            IExperiment experiment = new LimitExperiment();

            XmlSerializer ser = new XmlSerializer(typeof(Settings));
            //Settings settings = new Settings()
            //{
            //    SmallBlind = 1,
            //    BigBlind = 2,
            //    GamesPerIndividual = 100,
            //    LogFile = "mutlithreaded_log.txt",
            //    MaxHandsPerTourney = 200,
            //    PlayersPerGame = 6,
            //    StackSize = 124,
            //    Threads = 4
            //};
            //ser.Serialize(new StreamWriter("settings.xml"), settings);
            Settings settings = (Settings)ser.Deserialize(new StreamReader("settings.xml"));
            var      eval     = new PokerPopulationEvaluator <SimpleLimitNeuralNetPlayer2, RingGamePlayerEvaluator>(settings);

            var ea = new EvolutionAlgorithm(
                new Population(idgen,
                               GenomeFactory.CreateGenomeList(experiment.DefaultNeatParameters,
                                                              idgen, experiment.InputNeuronCount,
                                                              experiment.OutputNeuronCount,
                                                              experiment.DefaultNeatParameters.pInitialPopulationInterconnections,
                                                              experiment.DefaultNeatParameters.populationSize)),
                eval,
                experiment.DefaultNeatParameters);

            Console.WriteLine("Starting real evolution");
            for (int i = 0; true; i++)
            {
                Console.WriteLine("Generation {0}", i + 1);
                ea.PerformOneGeneration();
                Console.WriteLine("Champion Fitness={0}", ea.BestGenome.Fitness);
                var doc = new XmlDocument();
                XmlGenomeWriterStatic.Write(doc, (NeatGenome)ea.BestGenome);
                FileInfo oFileInfo = new FileInfo("genomes_simple\\" + "bestGenome" + i.ToString() + ".xml");
                doc.Save(oFileInfo.FullName);
            }
        }
        /// <summary>
        /// Runs one generation of the evolutionary algorithm.
        /// </summary>
        public void oneGeneration(int currentGeneration)
        {
            DateTime dt = DateTime.Now;

            EA.PerformOneGeneration();
            if (EA.BestGenome.RealFitness > MaxFitness)
            {
                SimExperiment.bestGenomeSoFar = (NeatGenome)EA.BestGenome;
                MaxFitness = EA.BestGenome.RealFitness;
                XmlDoc     = new XmlDocument();
                XmlGenomeWriterStatic.Write(XmlDoc, (NeatGenome)EA.BestGenome);
                OutputFileInfo = new FileInfo(Path.Combine(OutputFolder, "bestGenome" + currentGeneration.ToString() + "_" + ((int)MaxFitness).ToString() + ".xml"));
                XmlDoc.Save(OutputFileInfo.FullName);
            }
            if (experiment.DefaultNeatParameters.NS2 || experiment.DefaultNeatParameters.NSLC)
            {
                // The only reason NS2 has special output is so we can profile the novelty calc time versus the fitness calc time
                Console.Write(EA.Generation.ToString() + " " + EA.BestGenome.RealFitness);
                if (experiment.DefaultNeatParameters.NS1)
                {
                    Console.Write(" nov: " + EA.ns1archiveAverageNovelty + " " + EA.Population.GenomeList.Count + "[" + EA.archiveSize + "]");
                }
                else
                {
                    Console.Write(" nov: " + EA.averageNovelty + " " + EA.Population.GenomeList.Count + "[" + EA.archiveSize + "]");
                }

                if (experiment.DefaultNeatParameters.track_me_grid)
                {
                    Console.Write("[" + EA.numFilledBins + "] " + EA.gridAverageFitness);
                }
                Console.WriteLine(" T-sim/nov/spe: " + EA.timeSpentInFitnessEval + " " + EA.timeSpentOutsideFitnessEval + " " + EA.timeSpentInSpeciation);
            }
            else if (experiment.DefaultNeatParameters.mapelites)
            {
                Console.WriteLine(EA.Generation.ToString() + " " + EA.BestGenome.RealFitness + " " + EA.Population.GenomeList.Count + "[" + EA.numFilledBins + "] " + EA.gridAverageFitness + " " + (DateTime.Now.Subtract(dt)));
            }
            else
            {
                Console.Write(EA.Generation.ToString() + " " + EA.BestGenome.RealFitness + " " + EA.Population.GenomeList.Count); // TODO: Add in average novelty
                if (experiment.DefaultNeatParameters.track_me_grid)
                {
                    Console.Write("[" + EA.numFilledBins + "] " + EA.gridAverageFitness);
                }
                Console.WriteLine(" " + (DateTime.Now.Subtract(dt)));
            }

            if (FinalPositionLogging)
            {
                foreach (IGenome g in EA.Population.GenomeList)
                {
                    FinalPositionOutput.WriteLine(g.GenomeId + "," + g.Behavior.finalLocation[0] + "," + g.Behavior.finalLocation[1]);
                }
            }

            if (TrajectoryLogging)
            {
                // If this is the first generation, create the new output folder
                if (currentGeneration == 0)
                {
                    TrajectoryFolderPath = Path.Combine(OutputFolder, "trajectories-" + FolderNum.ToString());
                    if (!Directory.Exists(TrajectoryFolderPath))
                    {
                        System.IO.Directory.CreateDirectory(TrajectoryFolderPath);
                    }
                }

                foreach (IGenome g in EA.Population.GenomeList)
                {
                    // Check to see if we need to create a new folder
                    if (NumTrajectoriesRecorded == NumTrajectoriesPerFolder)
                    {
                        NumTrajectoriesRecorded = 0;
                        FolderNum++;
                        TrajectoryFolderPath = Path.Combine(OutputFolder, "trajectories-" + FolderNum.ToString());
                        if (!Directory.Exists(TrajectoryFolderPath))
                        {
                            System.IO.Directory.CreateDirectory(TrajectoryFolderPath);
                        }
                    }

                    // Print the Trajectory
                    using (System.IO.StreamWriter file = new System.IO.StreamWriter(Path.Combine(TrajectoryFolderPath, NumTrajectoriesRecorded.ToString() + ".txt"), true))
                    {
                        file.WriteLine("x,y");
                        foreach (double component in g.Behavior.trajectory)
                        {
                            file.Write(component.ToString() + ",");
                        }
                    }

                    // Increment the Trajectory counter
                    NumTrajectoriesRecorded++;
                }
            }

            int gen_mult = 200;

            if (Logging)
            {
                if (experiment.DefaultNeatParameters.noveltySearch && currentGeneration % gen_mult == 0)
                {
                    XmlDocument archiveout = new XmlDocument();

                    XmlPopulationWriter.WriteGenomeList(archiveout, EA.noveltyFixed.archive);
                    OutputFileInfo = new FileInfo(Path.Combine(OutputFolder, "archive.xml"));
                    archiveout.Save(OutputFileInfo.FullName);
                }
                // If doing MapElites: print base500 generation instead of regular, and also print averageFitness and number of filled bins (instead of not)
                // regular: generation bestfitness
                // mapelites: generation500 bestfitness [numfilledgrids] averagefitness
                if (experiment.DefaultNeatParameters.mapelites)
                {
                    LogOutput.WriteLine(EA.generationBase500.ToString() + " " + (MaxFitness).ToString() + " " + EA.numFilledBins.ToString() + " " + EA.averageFitness.ToString());
                    LogOutput.Flush();

                    if (FinalPositionLogging)
                    {
                        foreach (IGenome g in EA.addedToArchive)
                        {
                            ArchiveModificationOutput.WriteLine(g.GenomeId + ",+," + EA.numEvaluations + "," + g.Behavior.finalLocation[0] + "," + g.Behavior.finalLocation[1]);
                        }
                        EA.addedToArchive.Clear();
                        foreach (IGenome g in EA.removedFromArchive)
                        {
                            ArchiveModificationOutput.WriteLine(g.GenomeId + ",-," + EA.numEvaluations + "," + g.Behavior.finalLocation[0] + "," + g.Behavior.finalLocation[1]);
                        }
                        EA.removedFromArchive.Clear();
                    }
                }
                else if (experiment.DefaultNeatParameters.NS2 || experiment.DefaultNeatParameters.NSLC)
                {
                    LogOutput.Write(EA.generationBase500.ToString() + " " + (MaxFitness).ToString() + " " + EA.archiveSize + " " + EA.averageFitness.ToString() + " " + (EA.ns1 ? EA.ns1archiveAverageNovelty.ToString() : EA.averageNovelty.ToString()));
                    if (experiment.DefaultNeatParameters.track_me_grid)
                    {
                        LogOutput.Write(" " + EA.numFilledBins.ToString() + " " + EA.gridAverageFitness.ToString());
                    }
                    LogOutput.WriteLine();
                    LogOutput.Flush();

                    if (FinalPositionLogging)
                    {
                        foreach (IGenome g in EA.addedToArchive)
                        {
                            ArchiveModificationOutput.WriteLine(g.GenomeId + ",+," + EA.numEvaluations + "," + g.Behavior.finalLocation[0] + "," + g.Behavior.finalLocation[1]);
                        }
                        EA.addedToArchive.Clear();
                        foreach (IGenome g in EA.removedFromArchive)
                        {
                            ArchiveModificationOutput.WriteLine(g.GenomeId + ",-," + EA.numEvaluations + "," + g.Behavior.finalLocation[0] + "," + g.Behavior.finalLocation[1]);
                        }
                        EA.removedFromArchive.Clear();
                    }
                }
                else
                {
                    LogOutput.Write(EA.generationBase500.ToString() + " " + (MaxFitness).ToString());
                    if (experiment.DefaultNeatParameters.track_me_grid)
                    {
                        LogOutput.Write(" " + EA.numFilledBins.ToString() + " " + EA.gridAverageFitness.ToString());
                    }
                    LogOutput.WriteLine();
                    LogOutput.Flush();
                }

                // Output complexity statistics
                ComplexityOutput.WriteLine(EA.avgComplexity + ", " + EA.stdevComplexity + ", " + EA.minComplexity + ", " + EA.maxComplexity);
                ComplexityOutput.Flush();
            }
        }
Example #7
0
        /// <summary>
        /// Performs one tick of the simulation. This function is called automatically on loop by the game engine.
        /// </summary>
        /// <param name="gameTime"></param>
        protected override void Update(GameTime gameTime)
        {
            // base.Update() will call the Creature.Update() function
            base.Update(gameTime);

            if (!paused)
            {
                bool stop = false;

                // Stopping conditions:
                // 1) we are at the beginning of a first trial and there are already entries in the behavior characterization vector
                if (numUpdates == 0 && ea.Population.GenomeList[GenomeIndexOfCurrentCreature].Behavior.behaviorList.Count != 0)
                {
                    stop = true;
                }

                // 2) we have exceeded the number of max time steps
                else if ((!bidirectionalTrials && (numUpdates > maxTimeSteps)) || (bidirectionalTrials && (numUpdates > (2 * maxTimeSteps))))
                {
                    stop = true;
                }

                // 3) we are freezing after planted and someone has planted
                else if (freezeAfterPlanting && ((firstTrial && (plantedInColoredSpace1 || plantedInWhiteSpace1)) || (!firstTrial && (plantedInColoredSpace2 || plantedInWhiteSpace2))))
                {
                    stop = true;
                }

                if (stop)
                {
                    // If we're stopping, first check to see if we need to perform another generation of the EA
                    if (GenomeIndexOfCurrentCreature == ea.Population.GenomeList.Count - 1)
                    {
                        // Write the just-completed generation's data to XML before it is lost
                        using (System.IO.StreamWriter file = new System.IO.StreamWriter("RunInfo.txt", true))
                            file.WriteLine("Generation " + generation + " completed at " + DateTime.Now.ToString("HH:mm:ss tt"));

                        // Perform one run of the EA now that we have behavioral data
                        ea.noveltyFixed.measure_against = ea.Population.GenomeList;
                        ea.PerformOneGeneration();

                        // Increase the generation counter, now that we've written the last one
                        generation++;
                        if (fixedIndividuals && generation * populationSize >= numIndividuals)
                        {
                            Exit();
                        }
                        else
                        {
                            // Reset the index counter and start the next generation from the beginning
                            GenomeIndexOfCurrentCreature = -1;
                            ResetToFirstTrial();
                            return;
                        }
                    }

                    // Otherwise we can just rest to the first trial
                    else
                    {
                        ResetToFirstTrial();
                        return;
                    }
                }

                // If we're in a bidirectional search, we may need to being the second trial
                if (bidirectionalTrials && (numUpdates == (maxTimeSteps - 1)))
                {
                    beginSecondTrial();
                    return;
                }

                // Update the behavior vector for the creature that is currently be being evaluated
                numUpdates++;
                ea.Population.GenomeList[GenomeIndexOfCurrentCreature].Behavior.behaviorList.Add(currentCreature.Position.X);
                ea.Population.GenomeList[GenomeIndexOfCurrentCreature].Behavior.behaviorList.Add(currentCreature.Position.Y);
                ea.Population.GenomeList[GenomeIndexOfCurrentCreature].Behavior.behaviorList.Add(currentCreature.Heading);

                // If the creature has planted itself, decide whether or not it planted itself in a valid position
                // and tidy up some other business.
                if (currentCreature.currentState.Equals(State.Planting))
                {
                    // Append 1 to the behavior vector if the creature is planting
                    ea.Population.GenomeList[GenomeIndexOfCurrentCreature].Behavior.behaviorList.Add(1.0);
                    if (currentCreature.isAtValidPlantingLocation())
                    {
                        if (firstTrial)
                        {
                            plantedInColoredSpace1 = true;
                        }
                        else
                        {
                            plantedInColoredSpace2 = true;
                        }
                    }
                    else
                    {
                        if (firstTrial)
                        {
                            plantedInWhiteSpace1 = true;
                        }
                        else
                        {
                            plantedInWhiteSpace2 = true;
                        }
                    }
                }
                else
                {
                    // Otherwise append 0 to the behavior vector if the creature is not moving
                    ea.Population.GenomeList[GenomeIndexOfCurrentCreature].Behavior.behaviorList.Add(0.0);
                }
            }
        }
Example #8
0
        public static void ThreeDHyperNEAT()
        {
            if (!cmdParser.IsArgumentProvided("-shape", out Program.Shape))
            {
                Program.Shape = "triangle";
            }

            if (!cmdParser.IsArgumentProvided("-folder", out Program.LogFolder))
            {
                Program.LogFolder = "TestLogs";
            }

            if (!Directory.Exists(Program.LogFolder))
            {
                Directory.CreateDirectory(Program.LogFolder);
            }

            if (!cmdParser.IsIntArgumentProvided("-gens", out Program.MaxGenerations))
            {
                Program.MaxGenerations = 1000;
            }



            double       maxFitness     = 0;
            int          maxGenerations = Program.MaxGenerations;
            int          populationSize = Program.PopulationSize;
            IExperiment  exp            = new Skirmish3DExperiment(5, Program.Shape, Program.PopulationSize);
            StreamWriter sw             = File.CreateText(Path.Combine(Program.LogFolder,
                                                                       String.Format("{0}-logfile.log", Program.LogFolder)));

            sw.AutoFlush = true;

            XmlDocument        doc;
            FileInfo           oFileInfo;
            IdGenerator        idgen;
            EvolutionAlgorithm ea;

            idgen = new IdGenerator();
            ea    = new EvolutionAlgorithm(new Population(idgen, GenomeFactory.CreateGenomeList(exp.DefaultNeatParameters, idgen, exp.InputNeuronCount, exp.OutputNeuronCount, exp.DefaultNeatParameters.pInitialPopulationInterconnections, populationSize)), exp.PopulationEvaluator, exp.DefaultNeatParameters);

            for (int j = 0; j < maxGenerations; j++)
            {
                DateTime dt = DateTime.Now;
                ea.PerformOneGeneration();
                if (ea.BestGenome.Fitness > maxFitness)
                {
                    maxFitness = ea.BestGenome.Fitness;
                    doc        = new XmlDocument();
                    XmlGenomeWriterStatic.Write(doc, (NeatGenome)ea.BestGenome);
                    oFileInfo = new FileInfo(Path.Combine(Program.LogFolder, "BestGenome-" + j.ToString() + ".xml"));
                    doc.Save(oFileInfo.FullName);

                    // This will output the substrate, uncomment if you want that

                    /* doc = new XmlDocument();
                     * XmlGenomeWriterStatic.Write(doc, (NeatGenome) SkirmishNetworkEvaluator.substrate.generateMultiGenomeModulus(ea.BestGenome.Decode(null),5));
                     * oFileInfo = new FileInfo(folder + "bestNetwork" + j.ToString() + ".xml");
                     * doc.Save(oFileInfo.FullName);
                     */
                }
                Console.WriteLine(ea.Generation.ToString() + " " + ea.BestGenome.Fitness + " " + (DateTime.Now.Subtract(dt)));
                //Do any post-hoc stuff here

                sw.WriteLine("{0} {1} {2}", ea.Generation, maxFitness, ea.Population.MeanFitness);
                sw.Flush();
            }
            sw.Close();

            doc = new XmlDocument();
            XmlGenomeWriterStatic.Write(doc, (NeatGenome)ea.BestGenome, ActivationFunctionFactory.GetActivationFunction("NullFn"));
            oFileInfo = new FileInfo(Path.Combine(Program.LogFolder, "BestGenome.xml"));
            doc.Save(oFileInfo.FullName);
        }
Example #9
0
        private static void PredatorCCEAHNMainThread(object oAgentId)
        {
            int         agentId        = (int)oAgentId;
            double      maxFitness     = 0;
            int         maxGenerations = Program.MaxGenerations;
            int         populationSize = Program.PopulationSize;
            IExperiment exp            = new SkirmishCCEAExperiment(agentId, Program.PopulationSize);

            StreamWriter sw = File.CreateText(Path.Combine(Program.LogFolder,
                                                           String.Format("{0}-logfile-{1}.log", Program.LogFolder, agentId)));

            sw.AutoFlush = true;

            XmlDocument doc;
            FileInfo    oFileInfo;

            IdGenerator        idgen = new IdGenerator();
            EvolutionAlgorithm ea    = new EvolutionAlgorithm(
                new Population(idgen,
                               GenomeFactory.CreateGenomeList(exp.DefaultNeatParameters,
                                                              idgen, exp.InputNeuronCount, exp.OutputNeuronCount,
                                                              exp.DefaultNeatParameters.pInitialPopulationInterconnections,
                                                              populationSize)),
                exp.PopulationEvaluator, exp.DefaultNeatParameters);

            for (int j = 0; j < maxGenerations; j++)
            {
                DateTime dt = DateTime.Now;
                ea.PerformOneGeneration();

                if (ea.BestGenome.Fitness > maxFitness)
                {
                    maxFitness = ea.BestGenome.Fitness;
                    doc        = new XmlDocument();
                    XmlGenomeWriterStatic.Write(doc, (NeatGenome)ea.BestGenome);
                    oFileInfo = new FileInfo(Path.Combine(LogFolder,
                                                          String.Format("BestGenome-{0}-{1}.xml", agentId, j)));
                    doc.Save(oFileInfo.FullName);

                    // This will output the substrate, uncomment if you want that

                    /* doc = new XmlDocument();
                     * XmlGenomeWriterStatic.Write(doc, (NeatGenome) SkirmishNetworkEvaluator.substrate.generateMultiGenomeModulus(ea.BestGenome.Decode(null),5));
                     * oFileInfo = new FileInfo(folder + "bestNetwork" + j.ToString() + ".xml");
                     * doc.Save(oFileInfo.FullName);
                     */
                }

                Console.WriteLine("[{0}] {1} {2} {3}", agentId, ea.Generation, ea.BestGenome.Fitness, (DateTime.Now.Subtract(dt)));
                //Do any post-hoc stuff here

                sw.WriteLine("{0} {1} {2}", ea.Generation, maxFitness, ea.Population.MeanFitness);
                sw.Flush();
            }
            sw.Close();

            //doc = new XmlDocument();
            //XmlGenomeWriterStatic.Write(doc, (NeatGenome)ea.BestGenome, ActivationFunctionFactory.GetActivationFunction("NullFn"));
            //oFileInfo = new FileInfo(Path.Combine(LogFolder, "BestGenome.xml"));
            //doc.Save(oFileInfo.FullName);

            Environment.Exit(0);
        }