private void compareFilters(KalmanFilter a, KalmanFilter b) { DMatrixRMaj testX = b.getState(); DMatrixRMaj testP = b.getCovariance(); DMatrixRMaj X = a.getState(); DMatrixRMaj P = a.getCovariance(); EjmlUnitTests.assertEquals(testX, X, UtilEjml.TEST_F64); EjmlUnitTests.assertEquals(testP, P, UtilEjml.TEST_F64); }
public void testNumericalJacobian() { JacobianTestFunction func = new JacobianTestFunction(); DMatrixRMaj param = new DMatrixRMaj(3, 1, true, 2, -1, 4); LevenbergMarquardt alg = new LevenbergMarquardt(func); DMatrixRMaj X = RandomMatrices_DDRM.rectangle(NUM_PTS, 1, rand); DMatrixRMaj numJacobian = new DMatrixRMaj(3, NUM_PTS); DMatrixRMaj analyticalJacobian = new DMatrixRMaj(3, NUM_PTS); alg.configure(param, X, new DMatrixRMaj(NUM_PTS, 1)); alg.computeNumericalJacobian(param, X, numJacobian); func.deriv(X, analyticalJacobian); EjmlUnitTests.assertEquals(analyticalJacobian, numJacobian, 1e-6); }
/** * Runs the simple optimization problem with a set of randomly generated inputs. * * @param numPoints How many sample points there are. */ public void runTrivial(int numPoints) { JacobianTestFunction func = new JacobianTestFunction(); DMatrixRMaj paramInit = new DMatrixRMaj(3, 1); DMatrixRMaj param = new DMatrixRMaj(3, 1, true, 2, -1, 4); LevenbergMarquardt alg = new LevenbergMarquardt(func); DMatrixRMaj X = RandomMatrices_DDRM.rectangle(numPoints, 1, rand); DMatrixRMaj Y = new DMatrixRMaj(numPoints, 1); func.compute(param, X, Y); alg.optimize(paramInit, X, Y); DMatrixRMaj foundParam = alg.getParameters(); Assert.IsTrue(Math.Abs(0 - alg.getFinalCost()) < UtilEjml.TEST_F64); EjmlUnitTests.assertEquals(param, foundParam, 1e-6); }