Example #1
0
        public override void Step(Framework.Settings settings)
        {
            base.Step(settings);

            DistanceInput input = new DistanceInput();

            input.proxyA.Set(_polygonA, 0);
            input.proxyB.Set(_polygonB, 0);
            input.transformA = _transformA;
            input.transformB = _transformB;
            input.useRadii   = true;
            SimplexCache cache = new SimplexCache();

            cache.count = 0;
            DistanceOutput output = new DistanceOutput();

            Distance.ComputeDistance(out output, out cache, ref input);

            _debugDraw.DrawString(50, _textLine, "distance = {0:n}", output.distance);
            _textLine += 15;

            _debugDraw.DrawString(50, _textLine, "iterations = {0:n}", output.iterations);
            _textLine += 15;

            {
                Color color             = new Color(0.9f, 0.9f, 0.9f);
                FixedArray8 <Vector2> v = new FixedArray8 <Vector2>();
                for (int i = 0; i < _polygonA._vertexCount; ++i)
                {
                    v[i] = MathUtils.Multiply(ref _transformA, _polygonA._vertices[i]);
                }
                _debugDraw.DrawPolygon(ref v, _polygonA._vertexCount, color);

                for (int i = 0; i < _polygonB._vertexCount; ++i)
                {
                    v[i] = MathUtils.Multiply(ref _transformB, _polygonB._vertices[i]);
                }
                _debugDraw.DrawPolygon(ref v, _polygonB._vertexCount, color);
            }

            Vector2 x1 = output.pointA;
            Vector2 x2 = output.pointB;


            _debugDraw.DrawPoint(x1, 0.5f, new Color(1.0f, 0.0f, 0.0f));
            _debugDraw.DrawPoint(x2, 0.5f, new Color(1.0f, 0.0f, 0.0f));

            _debugDraw.DrawSegment(x1, x2, new Color(1.0f, 1.0f, 0.0f));
        }
        private float distanceWithPhysicObj(PhysicObj obj)
        {
            if (obj == null)
            {
                return(-1);
            }
            Fixture proxyAfix = owner.getBoundsFixture();
            Fixture proxyBfix = obj.getBoundsFixture();

            if (proxyAfix == null || proxyBfix == null)
            {
                return(-1);
            }

            DistanceProxy proxyA = new DistanceProxy();

            proxyA.Set(proxyAfix.Shape, 0);
            DistanceProxy proxyB = new DistanceProxy();

            proxyB.Set(proxyBfix.Shape, 1);
            DistanceInput distInput = new DistanceInput();

            distInput.ProxyA = proxyA;
            distInput.ProxyB = proxyB;
            Transform transformA;

            owner.body.GetTransform(out transformA);
            Transform transformB;

            obj.body.GetTransform(out transformB);
            distInput.TransformA = transformA;
            distInput.TransformB = transformB;

            DistanceOutput distout      = new DistanceOutput();
            SimplexCache   simplexCache = new SimplexCache();

            Distance.ComputeDistance(out distout, out simplexCache, distInput);

            return(distout.Distance);
        }
Example #3
0
        public static void ComputeDistance(out DistanceOutput output, out SimplexCache cache, DistanceInput input)
        {
            cache = new SimplexCache();

            /*
             * if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled
             ++GJKCalls;
             */

            // Initialize the simplex.
            Simplex simplex = new Simplex();

            simplex.ReadCache(ref cache, input.ProxyA, ref input.TransformA, input.ProxyB, ref input.TransformB);

            // These store the vertices of the last simplex so that we
            // can check for duplicates and prevent cycling.
            var saveA = new int[3];
            var saveB = new int[3];

            //float distanceSqr1 = Settings.MaxFloat;

            // Main iteration loop.
            int iter = 0;

            while (iter < MaxGJKIterations)
            {
                // Copy simplex so we can identify duplicates.
                int saveCount = simplex.Count;
                for (var i = 0; i < saveCount; ++i)
                {
                    saveA[i] = simplex.V[i].IndexA;
                    saveB[i] = simplex.V[i].IndexB;
                }

                switch (simplex.Count)
                {
                case 1:
                    break;

                case 2:
                    simplex.Solve2();
                    break;

                case 3:
                    simplex.Solve3();
                    break;

                default:
                    throw new ArgumentOutOfRangeException();
                }

                // If we have 3 points, then the origin is in the corresponding triangle.
                if (simplex.Count == 3)
                {
                    break;
                }

                //FPE: This code was not used anyway.
                // Compute closest point.
                //Vector2 p = simplex.GetClosestPoint();
                //float distanceSqr2 = p.LengthSquared();

                // Ensure progress
                //if (distanceSqr2 >= distanceSqr1)
                //{
                //break;
                //}
                //distanceSqr1 = distanceSqr2;

                // Get search direction.
                Vector2 d = simplex.GetSearchDirection();

                // Ensure the search direction is numerically fit.
                if (d.LengthSquared < float.Epsilon * float.Epsilon)
                {
                    // The origin is probably contained by a line segment
                    // or triangle. Thus the shapes are overlapped.

                    // We can't return zero here even though there may be overlap.
                    // In case the simplex is a point, segment, or triangle it is difficult
                    // to determine if the origin is contained in the CSO or very close to it.
                    break;
                }

                // Compute a tentative new simplex vertex using support points.
                SimplexVertex vertex = simplex.V[simplex.Count];
                vertex.IndexA = input.ProxyA.GetSupport(Transform.MulT(input.TransformA.Quaternion2D, -d));
                vertex.WA     = Transform.Mul(input.TransformA, input.ProxyA.Vertices[vertex.IndexA]);

                vertex.IndexB            = input.ProxyB.GetSupport(Transform.MulT(input.TransformB.Quaternion2D, d));
                vertex.WB                = Transform.Mul(input.TransformB, input.ProxyB.Vertices[vertex.IndexB]);
                vertex.W                 = vertex.WB - vertex.WA;
                simplex.V[simplex.Count] = vertex;

                // Iteration count is equated to the number of support point calls.
                ++iter;

                /*
                 * if (Settings.EnableDiagnostics) //FPE: We only gather diagnostics when enabled
                 ++GJKIters;
                 */

                // Check for duplicate support points. This is the main termination criteria.
                bool duplicate = false;
                for (int i = 0; i < saveCount; ++i)
                {
                    if (vertex.IndexA == saveA[i] && vertex.IndexB == saveB[i])
                    {
                        duplicate = true;
                        break;
                    }
                }

                // If we found a duplicate support point we must exit to avoid cycling.
                if (duplicate)
                {
                    break;
                }

                // New vertex is ok and needed.
                ++simplex.Count;
            }

            // Prepare output.
            simplex.GetWitnessPoints(out output.PointA, out output.PointB);
            output.Distance   = (output.PointA - output.PointB).Length;
            output.Iterations = iter;

            // Cache the simplex.
            simplex.WriteCache(ref cache);

            // Apply radii if requested.
            if (input.UseRadii)
            {
                float rA = input.ProxyA.Radius;
                float rB = input.ProxyB.Radius;

                if (output.Distance > rA + rB && output.Distance > float.Epsilon)
                {
                    // Shapes are still no overlapped.
                    // Move the witness points to the outer surface.
                    output.Distance -= rA + rB;
                    Vector2 normal = output.PointB - output.PointA;
                    normal         = normal.Normalized;
                    output.PointA += normal * rA;
                    output.PointB -= normal * rB;
                }
                else
                {
                    // Shapes are overlapped when radii are considered.
                    // Move the witness points to the middle.
                    Vector2 p = (output.PointA + output.PointB) * 0.5f;
                    output.PointA   = p;
                    output.PointB   = p;
                    output.Distance = 0.0f;
                }
            }
        }
Example #4
0
        public override void Step(Framework.Settings settings)
        {
            base.Step(settings);

            DistanceInput input = new DistanceInput();
            input.proxyA.Set(_polygonA, 0);
            input.proxyB.Set(_polygonB, 0);
            input.transformA = _transformA;
            input.transformB = _transformB;
            input.useRadii = true;
            SimplexCache cache = new SimplexCache();
            cache.count = 0;
            DistanceOutput output = new DistanceOutput();
            Distance.ComputeDistance( out output, out cache, ref input);

            _debugDraw.DrawString(50, _textLine, "distance = {0:n}", output.distance);
            _textLine += 15;

            _debugDraw.DrawString(50, _textLine, "iterations = {0:n}", output.iterations);
            _textLine += 15;

            {
                Color color = new Color(0.9f, 0.9f, 0.9f);
                FixedArray8<Vector2> v = new FixedArray8<Vector2>();
                for (int i = 0; i < _polygonA._vertexCount; ++i)
                {
                    v[i] = MathUtils.Multiply(ref _transformA, _polygonA._vertices[i]);
                }
                _debugDraw.DrawPolygon(ref v, _polygonA._vertexCount, color);

                for (int i = 0; i < _polygonB._vertexCount; ++i)
                {
                    v[i] = MathUtils.Multiply(ref _transformB, _polygonB._vertices[i]);
                }
                _debugDraw.DrawPolygon(ref v, _polygonB._vertexCount, color);
            }

            Vector2 x1 = output.pointA;
            Vector2 x2 = output.pointB;

            _debugDraw.DrawPoint(x1, 0.5f, new Color(1.0f, 0.0f, 0.0f));
            _debugDraw.DrawPoint(x2, 0.5f, new Color(1.0f, 0.0f, 0.0f));

            _debugDraw.DrawSegment(x1, x2, new Color(1.0f, 1.0f, 0.0f));
        }