private void ExecuteLoadItemsCommand() { if (IsBusy) { return; } IsBusy = true; try { using (var dict = _db.GetDocument(CoreApp.DocId)) { var arr = dict.GetArray(CoreApp.ArrKey); for (int i = 0; i < arr.Count; i++) { DictionaryObject d = arr.GetDictionary(i); _items[i].Name = d.GetString("key"); _items[i].Quantity = d.GetInt("value"); _items[i].ImageByteArray = d.GetBlob("image")?.Content; } } } catch (Exception ex) { Debug.WriteLine(ex); } finally { IsBusy = false; } }
public DictionaryObject Predict(DictionaryObject input) { var blob = input.GetBlob("photo"); if (blob == null) { return(null); } var imageData = blob.Content; // `TensorFlowModel` is a fake implementation // this would be the implementation of the ml model you have chosen var modelOutput = TensorFlowModel.PredictImage(imageData); return(new MutableDictionaryObject(modelOutput)); // <1> }
protected override DictionaryObject DoPrediction(DictionaryObject input) { var blob = input.GetBlob("text"); if (blob == null) { return(null); } ContentType = blob.ContentType; var text = Encoding.UTF8.GetString(blob.Content); var wc = text.Split(' ', StringSplitOptions.RemoveEmptyEntries).Length; var sc = text.Split('.', StringSplitOptions.RemoveEmptyEntries).Length; var output = new MutableDictionaryObject(); output.SetInt("wc", wc); output.SetInt("sc", sc); return(output); }