private void CancelRentButton_Click(object sender, RoutedEventArgs e) { if (DataGridBox.SelectedItem != null) { Warning warn = new Warning("Are you sure?"); warn.ShowDialog(); if (isRemoved) { WSCalendar temp = (WSCalendar)DataGridBox.SelectedItem; calendarService.deleteRent(temp.id); } } DataGridBox.ClearValue(ItemsControl.ItemsSourceProperty); DataGridBox.Items.Clear(); if (RenterToggle.IsChecked == true) { RenterCombobox.IsEnabled = true; loadLandlordColumns(); } else { RenterCombobox.IsEnabled = false; loadTenantColumns(); } }
private static void sparseMachine(Sparse <double>[] inputs, double[] doubleOutputs) { // The dataset has output labels as 4 and 2. We have to convert them // into negative and positive labels so they can be properly processed. // bool[] outputs = doubleOutputs.Apply(x => x == 2.0 ? false : true); // Create a learning algorithm for Sparse data. The first generic argument // of the learning algorithm below is the chosen kernel function, and the // second is the type of inputs the machine should accept. Note that, using // those interfaces, it is possible to define custom kernel functions that // operate directly on double[], string[], graphs, trees or any object: var teacher = new LinearDualCoordinateDescent <Linear, Sparse <double> >() { Loss = Loss.L2, Complexity = 1000, // Create a hard-margin SVM Tolerance = 1e-5 }; // Use the learning algorithm to Learn var svm = teacher.Learn(inputs, outputs); // Compute the machine's answers bool[] answers = svm.Decide(inputs); // Create a confusion matrix to show the machine's performance var m = new ConfusionMatrix(predicted: answers, expected: outputs); // Show it onscreen DataGridBox.Show(new ConfusionMatrixView(m)).Hold(); }
private void ItemHome_Selected(object sender, RoutedEventArgs e) { DataGridBox.ClearValue(ItemsControl.ItemsSourceProperty); DataGridBox.Items.Clear(); StartDateDP.SelectedDate = null; EndDateDP.SelectedDate = null; KitchenCB.IsChecked = false; AnimalsCB.IsChecked = false; ParkingCB.IsChecked = false; CityTB.Text = ""; BedCountTB.Text = ""; PriceTB.Text = ""; }
private void RenterToggle_Click(object sender, RoutedEventArgs e) { DataGridBox.ClearValue(ItemsControl.ItemsSourceProperty); DataGridBox.Items.Clear(); if (RenterToggle.IsChecked == true) { RenterCombobox.IsEnabled = true; loadLandlordColumns(); } else { RenterCombobox.IsEnabled = false; loadTenantColumns(); } }
private static void sparseMachineProbabilistic(Sparse <double>[] inputs, double[] doubleOutputs) { // The dataset has output labels as 4 and 2. We have to convert them // into negative and positive labels so they can be properly processed. // bool[] outputs = doubleOutputs.Apply(x => x == 2.0 ? false : true); // Create a learning algorithm for Sparse data. The first generic argument // of the learning algorithm below is the chosen kernel function, and the // second is the type of inputs the machine should accept. Note that, using // those interfaces, it is possible to define custom kernel functions that // operate directly on double[], string[], graphs, trees or any object: var teacher = new LinearDualCoordinateDescent <Linear, Sparse <double> >() { Loss = Loss.L2, Complexity = 1000, // Create a hard-margin SVM Tolerance = 1e-5 }; // Use the learning algorithm to Learn var svm = teacher.Learn(inputs, outputs); // Create a probabilistic calibration algorithm based on Platt's method: var calibration = new ProbabilisticOutputCalibration <Linear, Sparse <double> >() { Model = svm }; // Let's say that instead of having our data as bool[], we would // have received it as double[] containing the actual probabilities // associated with each sample: doubleOutputs.Apply(x => x == 2.0 ? 0.05 : 0.87, result: doubleOutputs); // Calibrate the SVM using Platt's method svm = calibration.Learn(inputs, doubleOutputs); // Compute the machine's answers bool[] answers = svm.Decide(inputs); // Compute the machine's probabilities double[] prob = svm.Probability(inputs); // Create a confusion matrix to show the machine's performance var m = new ConfusionMatrix(predicted: answers, expected: outputs); // Show it onscreen DataGridBox.Show(new ConfusionMatrixView(m)).Hold(); }
private void SearchButton_Click(object sender, RoutedEventArgs e) { DataGridBox.ClearValue(ItemsControl.ItemsSourceProperty); DataGridBox.Items.Clear(); DataLayer.Classes.FlatSearchCriteria criteria = new DataLayer.Classes.FlatSearchCriteria(); criteria.startDate = StartDateDP.SelectedDate.GetValueOrDefault(); criteria.endDate = EndDateDP.SelectedDate.GetValueOrDefault(); if (!BedCountTB.Text.Equals("")) { int parsed; if (int.TryParse(BedCountTB.Text, out parsed)) { criteria.bedCount = parsed; } } if (!PriceTB.Text.Equals("")) { int parsed; if (int.TryParse(PriceTB.Text, out parsed)) { criteria.price = parsed; if (PriceCB.SelectedIndex == 0) { criteria.over = true; } else { criteria.over = false; } } } criteria.city = CityTB.Text; criteria.animals = AnimalsCB.IsChecked.GetValueOrDefault(); criteria.kitchen = KitchenCB.IsChecked.GetValueOrDefault(); criteria.parking = ParkingCB.IsChecked.GetValueOrDefault(); rents = flatsService.getAvailableRooms(criteria); LoadGrid(rents); }
private static void cancer() { // Create a new LibSVM sparse format data reader // to read the Wisconsin's Breast Cancer dataset // var reader = new SparseReader("examples-sparse.txt"); int[] outputs; // Read the classification problem into dense memory double[][] inputs = reader.ReadToEnd(sparse: false, labels: out outputs); // The dataset has output labels as 4 and 2. We have to convert them // into negative and positive labels so they can be properly processed. // outputs = outputs.Apply(x => x == 2 ? -1 : +1); // Create a new linear-SVM for the problem dimensions var svm = new SupportVectorMachine(inputs: reader.Dimensions); // Create a learning algorithm for the problem's dimensions var teacher = new LinearDualCoordinateDescent(svm, inputs, outputs) { Loss = Loss.L2, Complexity = 1000, Tolerance = 1e-5 }; // Learn the classification double error = teacher.Run(); // Compute the machine's answers for the learned inputs int[] answers = inputs.Apply(x => Math.Sign(svm.Compute(x))); // Create a confusion matrix to show the machine's performance var m = new ConfusionMatrix(predicted: answers, expected: outputs); // Show it onscreen DataGridBox.Show(new ConfusionMatrixView(m)); }
public void ComputeTest1() { double[,] data = Matrix.Identity(5); DataGridBox.Show(data).Hold(); }