public int Direction(double[] state) { var sta = new State { Values = state, Occurrence = 1, Output = -1 }; lastKey = Tembo.GetId(); Historical.Add(lastKey, sta); lastAction = dqnAgent.Act(state); return(lastAction); }
private void BLearning() { while (true) { if (Historical.Count < 20000) { // Thread.Sleep(TimeSpan.FromMinutes(30)); } var correct = 0.0; var total = 0.0; var options = new AgentOptions { Gamma = Tembo.Random(0.01, 0.99), Epsilon = Tembo.Random(0.01, 0.75), Alpha = Tembo.Random(0.01, 0.99), ExperinceAddEvery = Tembo.RandomInt(1, 10000), ExperienceSize = 0, LearningSteps = Tembo.RandomInt(1, 10), HiddenUnits = Tembo.RandomInt(100000, 100000000), ErrorClamp = Tembo.Random(0.01, 1.0), AdaptiveLearningSteps = true }; var agent = new DQN(dqnAgent.NumberOfStates, dqnAgent.NumberOfActions, options); for (var i = 0; i < Historical.Count; i++) { var spi = Historical.ElementAt(i); var action = agent.Act(spi.Value.Values); if (action == spi.Value.Output) { correct += 1; agent.Learn(1); } else { agent.Learn(-1); } total += 1; } var winrate = (correct / total) * 100; if (winrate > WinRate) { CN.Log($"NEW AGENT DISCOVERED --> WINRATE {winrate.ToString("p")}, CLASS: {AgentName}", 2); Save(); dqnAgent = agent; WinRate = winrate; } } }