Example #1
0
        /// <summary>
        /// ヒストグラムの計算
        /// </summary>
        /// <param name="img"></param>
        /// <param name="hist"></param>
        private static void CalcHist(IplImage img, CvHistogram hist)
        {
            hist.Calc(img);
            float minValue, maxValue;

            hist.GetMinMaxValue(out minValue, out maxValue);
            Cv.Scale(hist.Bins, hist.Bins, ((double)img.Height) / maxValue, 0);
        }
Example #2
0
        /// <summary>
        /// Gets flesh regions by histogram back projection
        /// </summary>
        /// <param name="imgSrc"></param>
        /// <param name="hsvPlanes"></param>
        /// <param name="imgRender"></param>
        private void RetrieveFleshRegion(IplImage imgSrc, IplImage[] hsvPlanes, IplImage imgDst)
        {
            int[]     histSize = new int[] { 30, 32 };
            float[]   hRanges  = { 0.0f, 20f };
            float[]   sRanges  = { 50f, 255f };
            float[][] ranges   = { hRanges, sRanges };

            imgDst.Zero();
            using (CvHistogram hist = new CvHistogram(histSize, HistogramFormat.Array, ranges, true))
            {
                hist.Calc(hsvPlanes, false, null);
                float minValue, maxValue;
                hist.GetMinMaxValue(out minValue, out maxValue);
                hist.Normalize(imgSrc.Width * imgSrc.Height * 255 / maxValue);
                hist.CalcBackProject(hsvPlanes, imgDst);
            }
        }
Example #3
0
        /// <summary>
        /// バックプロジェクションにより肌色領域を求める
        /// </summary>
        /// <param name="imgSrc"></param>
        /// <param name="hsvPlanes"></param>
        /// <param name="imgRender"></param>
        private void RetrieveFleshRegion(IplImage imgSrc, IplImage[] hsvPlanes, IplImage imgDst)
        {
            int[] histSize = new int[] {30, 32};
            float[] hRanges = {0.0f, 20f};
            float[] sRanges = {50f, 255f};
            float[][] ranges = {hRanges, sRanges};

            imgDst.Zero();
            using (CvHistogram hist = new CvHistogram(histSize, HistogramFormat.Array, ranges, true))
            {
                hist.Calc(hsvPlanes, false, null);
                float minValue, maxValue;
                hist.GetMinMaxValue(out minValue, out maxValue);
                hist.Normalize(imgSrc.Width * imgSrc.Height * 255 / maxValue);
                hist.CalcBackProject(hsvPlanes, imgDst);
            }
        }
    // Creates an image from a 2D Histogram (x axis = Hue, y axis = Saturation)
    void DrawHSHistogram(CvHistogram hist)
    {
        // Get the maximum and minimum values from the histogram
        float minValue, maxValue;

        hist.GetMinMaxValue(out minValue, out maxValue);

        int xBins = hist.Bins.GetDimSize(0);  // Number of hue bins (x axis)
        int yBins = hist.Bins.GetDimSize(1);  // Number of saturation bins (y axis)

        // Create an image to visualize the histogram
        int   scaleHeight = 5, scaleWidth = 5;
        CvMat hist_img = new CvMat(yBins * scaleHeight, xBins * scaleWidth, TriColorMatrix);

        hist_img.Zero(); // Set all the pixels to black

        double binVal;
        int    _intensity;

        for (int h = 0; h < xBins; h++)
        {
            for (int s = 0; s < yBins; s++)
            {
                binVal     = Cv.QueryHistValue_2D(hist, h, s);
                _intensity = Cv.Round(binVal / maxValue * 255); // 0 to 255

                // Draw a rectangle (h, s) to (h+1, s+1)  (scaled by window size)
                //  The pixel value is the color of the histogram value at bin (h, s)
                hist_img.Rectangle(Cv.Point(h * scaleWidth, s * scaleHeight),
                                   Cv.Point((h + 1) * scaleWidth - 1, (s + 1) * scaleHeight - 1),
                                   Cv.RGB(_intensity, _intensity, _intensity),
                                   Cv.FILLED);
            }
        }


        Cv.ShowImage("HS Histogram", hist_img);
    }
Example #5
0
        public IplImage BinarizerMethod_Hist(IplImage src)
        {
            bina = new IplImage(src.Size, BitDepth.U8, 1);
            gray = this.GrayScale(src);

            int area = 200;
            int num  = 0;

            int row   = (src.Width % area == 0) ? (int)(src.Width / area) : (int)(src.Width / area + 1);
            int col   = (src.Height % area == 0) ? (int)(src.Height / area) : (int)(src.Height / area + 1);
            int count = row * col;

            float[]    data      = new float[count];
            IplImage[] piece     = new IplImage[count];
            CvRect[]   piece_roi = new CvRect[count];

            for (int x = 0; x < src.Width; x = x + area)
            {
                for (int y = 0; y < src.Height; y = y + area)
                {
                    CvRect roi = new CvRect
                    {
                        X      = x,
                        Y      = y,
                        Width  = area,
                        Height = area
                    };

                    if (roi.X + roi.Width > src.Width)
                    {
                        roi.Width = area - ((roi.X + roi.Width) - src.Width);
                    }
                    if (roi.Y + roi.Height > src.Height)
                    {
                        roi.Height = area - ((roi.Y + roi.Height) - src.Height);
                    }

                    gray.SetROI(roi);
                    piece[num] = new IplImage(gray.ROI.Size, BitDepth.U8, 1);
                    Cv.Copy(gray, piece[num]);
                    gray.ResetROI();

                    //히스토그램 계산//
                    int[]       size = { area };
                    CvHistogram hist = new CvHistogram(size, HistogramFormat.Array);
                    Cv.CalcHist(piece[num], hist);

                    float minValue, maxValue;
                    hist.GetMinMaxValue(out minValue, out maxValue);

                    int highlevel = 0;
                    for (int i = 0; i < area; i++)
                    {
                        if (maxValue == hist.Bins[i].Val0)
                        {
                            highlevel = i;
                        }
                    }

                    piece_roi[num] = roi;
                    data[num]      = highlevel;
                    num++;
                }
            }

            CvMat kernel = new CvMat(row, col, MatrixType.F32C1, data);

            Cv.Normalize(kernel, kernel, 255, 0, NormType.C);

            for (int r = 0; r < count; r++)
            {
                Cv.Threshold(piece[r], piece[r], kernel[r], 255, ThresholdType.Otsu);

                Cv.SetImageROI(bina, piece_roi[r]);
                Cv.Copy(piece[r], bina);
                bina.ResetROI();
            }

            //37강 - 윈도우 창//
            CvWindow win = new CvWindow("window", WindowMode.StretchImage, src);

            win.Resize(640, 480);
            win.Move(100, 0);
            win.ShowImage(piece[0]);
            win.Close();

            new CvWindow(piece[0]).Move(0, 0);
            new CvWindow(piece[1]).Move(0, 200);
            new CvWindow(piece[2]).Move(0, 400);
            //37강 - 윈도우 창//

            return(bina);
        }
    //  Takes an image and calculates its histogram in HSV color space
    // Color images have 3 channels (4 if you count alpha?)
    // Webcam captures them in (R)ed, (G)reen, (B)lue.
    // Convert to (H)ue, (S)aturation (V)alue to get better separation for thresholding
    CvHistogram CalculateHSVHistogram(CvMat _image)
    {
        // Hue, Saturation, Value or HSV is a color model that describes colors (hue or tint)
        // in terms of their shade (saturation or amount of gray)
        //	and their brightness (value or luminance).
        // For HSV, Hue range is [0,179], Saturation range is [0,255] and Value range is [0,255]

        // hue varies from 0 to 179, see cvtColor
        float hueMin = 0, hueMax = 179;

        float[] hueRanges = new float[2] {
            hueMin, hueMax
        };
        // saturation varies from 0 (black-gray-white) to
        // 255 (pure spectrum color)
        float satMin = 0, satMax = 255;

        float[] saturationRanges = new float[2] {
            satMin, satMax
        };

        float valMin = 0, valMax = 255;

        float[] valueRanges = new float[2] {
            valMin, valMax
        };

        float[][] ranges = { hueRanges, saturationRanges, valueRanges };

        // Note: You don't need to use all 3 channels for the histogram.
        int hueBins   = 32;               // Number of bins in the Hue histogram (more bins = narrower bins)
        int satBins   = 32;               // Number of bins in the Saturation histogram (more bins = narrower bins)
        int valueBins = 8;                // Number of bins in the Value histogram (more bins = narrower bins)

        float maxValue = 0, minValue = 0; // Minimum and maximum value of calculated histogram

        // Number of bins per histogram channel
        // If we use all 3 channels (H, S, V) then the histogram will have 3 dimensions.
        int[] hist_size = new int[] { hueBins, satBins, valueBins };

        CvHistogram hist = new CvHistogram(hist_size, HistogramFormat.Array, ranges, true);

        using (CvMat _imageHSV = ConvertToHSV(_image)) // Convert the image to HSV
                                                       // We could keep the image in B, G, R, A if we wanted to.
                                                       // Just split the channels into B, G, R planes

            using (CvMat imgH = new CvMat(_image.Rows, _image.Cols, MonoColorMatrix))
                using (CvMat imgS = new CvMat(_image.Rows, _image.Cols, MonoColorMatrix))
                    using (CvMat imgV = new CvMat(_image.Rows, _image.Cols, MonoColorMatrix))
                    {
                        // Break image into H, S, V planes
                        // If the image were RGB, then it would split into R, G, B planes respectively
                        _imageHSV.CvtPixToPlane(imgH, imgS, imgV, null); // Cv.Split also does this

                        // Store HSV planes as an IplImage array to pass to openCV's hist function
                        IplImage[] hsvPlanes = { Cv.GetImage(imgH), Cv.GetImage(imgS), Cv.GetImage(imgV) };

                        hist.Calc(hsvPlanes, false, null); // Call hist function (no accumulatation, no mask)

                        // Do we need to normalize??
                        hist.GetMinMaxValue(out minValue, out maxValue);
                        // Scale the histogram to unity height
                        hist.Normalize(_imageHSV.Width * _imageHSV.Height * hist.Dim * hueMax / maxValue);
                    }

        return(hist);  // Return the histogram
    }
    // Creates an image from a 1D Histogram
    void Draw1DHistogram(CvMat _image)
    {
        float channelMax = 255;

        CvHistogram hist1 = CalculateOneChannelHistogram(_image, 0, channelMax);
        CvHistogram hist2 = CalculateOneChannelHistogram(_image, 1, channelMax);
        CvHistogram hist3 = CalculateOneChannelHistogram(_image, 2, channelMax);


        // Get the maximum and minimum values from the histogram
        float minValue, maxValue;

        hist1.GetMinMaxValue(out minValue, out maxValue);

        int hBins = hist1.Bins.GetDimSize(0);  // Number of bins


        // Create an image to visualize the histogram
        int   scaleWidth = 3, scaleHeight = 1;
        int   histWidth = hBins * imColorChannels * scaleWidth, histHeight = Mathf.FloorToInt(channelMax * scaleHeight);
        CvMat hist_img = new CvMat(histHeight, histWidth, TriColorMatrix);

        hist_img.Zero(); // Set all the pixels to black

        double binVal;
        int    _intensity;

        for (int h = 0; h < hBins; h++)
        {
            // Draw Channel 1
            binVal     = Cv.QueryHistValue_1D(hist1, h);
            _intensity = Cv.Round(binVal / maxValue * channelMax) * scaleHeight; // 0 to channelMax

            // Draw a rectangle (h, s) to (h+1, s+1)  (scaled by window size)
            //  The pixel value is the color of the histogram value at bin (h, s)
            hist_img.Rectangle(Cv.Point(h * imColorChannels * scaleWidth, histHeight),
                               Cv.Point(h * imColorChannels * scaleWidth + 1, histHeight - _intensity),
                               CvColor.Red, Cv.FILLED);

            // Draw Channel 2
            binVal     = Cv.QueryHistValue_1D(hist2, h);
            _intensity = Cv.Round(binVal / maxValue * channelMax) * scaleHeight; // 0 to channelMax

            // Draw a rectangle (h, s) to (h+1, s+1)  (scaled by window size)
            //  The pixel value is the color of the histogram value at bin (h, s)
            hist_img.Rectangle(Cv.Point(h * imColorChannels * scaleWidth + 2, histHeight * scaleHeight),
                               Cv.Point(h * imColorChannels * scaleWidth + 3, histHeight * scaleHeight - _intensity),
                               CvColor.Blue, Cv.FILLED);

            // Draw Channel 3
            binVal     = Cv.QueryHistValue_1D(hist3, h);
            _intensity = Cv.Round(binVal / maxValue * channelMax) * scaleHeight; // 0 to channelMax

            // Draw a rectangle (h, s) to (h+1, s+1)  (scaled by window size)
            //  The pixel value is the color of the histogram value at bin (h, s)
            hist_img.Rectangle(Cv.Point(h * imColorChannels * scaleWidth + 4, histHeight * scaleHeight),
                               Cv.Point(h * imColorChannels * scaleWidth + 5, histHeight * scaleHeight - _intensity),
                               CvColor.Green, Cv.FILLED);
        }

        Cv.ShowImage("Histogram", hist_img);
    }