private void InitializeCUFFT()
        {
            g_hvfield = new float2[DS];

            g_dvfield = new CudaPitchedDeviceVariable <float2>(DIM, DIM);
            g_tPitch  = g_dvfield.Pitch; //Store pitch in g_tPitch to keep consistency to the C++ code
            g_dvfield.CopyToDevice(g_hvfield);

            // Temporary complex velocity field data
            g_vxfield = new CudaDeviceVariable <float2>(PDS);
            g_vyfield = new CudaDeviceVariable <float2>(PDS);

            texref = new CudaTextureArray2D(advectVelocity_k, "texref", CUAddressMode.Wrap, CUFilterMode.Linear, 0, CUArrayFormat.Float, DIM, DIM, CudaArray2DNumChannels.Two);

            g_particles = new float2[DS];
            initParticles(g_particles, DIM, DIM);

            g_planr2c = new CudaFFTPlan2D(DIM, DIM, cufftType.R2C, Compatibility.PADDING);
            g_planc2r = new CudaFFTPlan2D(DIM, DIM, cufftType.C2R, Compatibility.PADDING);
        }
Example #2
0
        static void Main(string[] args)
        {
            const int nx = 2048;
            const int ny = 2048;

            // shifts applied to x and y data
            const int x_shift = 5;
            const int y_shift = 7;

            ShrQATest.shrQAStart(args);

            if ((nx % TILE_DIM != 0) || (ny % TILE_DIM != 0))
            {
                Console.Write("nx and ny must be multiples of TILE_DIM\n");
                ShrQATest.shrQAFinishExit(args, ShrQATest.eQAstatus.QA_WAIVED);
            }

            // execution configuration parameters
            dim3 grid    = new dim3(nx / TILE_DIM, ny / TILE_DIM, 1);
            dim3 threads = new dim3(TILE_DIM, TILE_DIM, 1);

            // This will pick the best possible CUDA capable device
            int devID = findCudaDevice(args);


            //Load Kernel image from resources
            string resName;

            if (IntPtr.Size == 8)
            {
                resName = "simplePitchLinearTexture_x64.ptx";
            }
            else
            {
                resName = "simplePitchLinearTexture.ptx";
            }

            string resNamespace = "simplePitchLinearTexture";
            string resource     = resNamespace + "." + resName;
            Stream stream       = Assembly.GetExecutingAssembly().GetManifestResourceStream(resource);

            if (stream == null)
            {
                throw new ArgumentException("Kernel not found in resources.");
            }
            byte[] kernels = new byte[stream.Length];

            int bytesToRead = (int)stream.Length;

            while (bytesToRead > 0)
            {
                bytesToRead -= stream.Read(kernels, (int)stream.Position, bytesToRead);
            }

            CudaKernel PLKernel    = ctx.LoadKernelPTX(kernels, "shiftPitchLinear");
            CudaKernel ArrayKernel = ctx.LoadKernelPTX(kernels, "shiftArray");

            CudaStopWatch stopwatch = new CudaStopWatch();

            // ----------------------------------
            // Host allocation and initialization
            // ----------------------------------

            float[] h_idata = new float[nx * ny];
            float[] h_odata = new float[nx * ny];
            float[] gold    = new float[nx * ny];

            for (int i = 0; i < nx * ny; ++i)
            {
                h_idata[i] = (float)i;
            }

            // ------------------------
            // Device memory allocation
            // ------------------------

            // Pitch linear input data
            CudaPitchedDeviceVariable <float> d_idataPL = new CudaPitchedDeviceVariable <float>(nx, ny);

            // Array input data
            CudaArray2D d_idataArray = new CudaArray2D(CUArrayFormat.Float, nx, ny, CudaArray2DNumChannels.One);

            // Pitch linear output data
            CudaPitchedDeviceVariable <float> d_odata = new CudaPitchedDeviceVariable <float>(nx, ny);

            // ------------------------
            // copy host data to device
            // ------------------------

            // Pitch linear
            d_idataPL.CopyToDevice(h_idata);

            // Array
            d_idataArray.CopyFromHostToThis <float>(h_idata);

            // ----------------------
            // Bind texture to memory
            // ----------------------

            // Pitch linear
            CudaTextureLinearPitched2D <float> texRefPL = new CudaTextureLinearPitched2D <float>(PLKernel, "texRefPL", CUAddressMode.Wrap, CUFilterMode.Point, CUTexRefSetFlags.NormalizedCoordinates, CUArrayFormat.Float, d_idataPL);
            CudaTextureArray2D texRefArray = new CudaTextureArray2D(ArrayKernel, "texRefArray", CUAddressMode.Wrap, CUFilterMode.Point, CUTexRefSetFlags.NormalizedCoordinates, d_idataArray);

            // ---------------------
            // reference calculation
            // ---------------------

            for (int j = 0; j < ny; j++)
            {
                int jshift = (j + y_shift) % ny;
                for (int i = 0; i < nx; i++)
                {
                    int ishift = (i + x_shift) % nx;
                    gold[j * nx + i] = h_idata[jshift * nx + ishift];
                }
            }

            // ----------------
            // shiftPitchLinear
            // ----------------

            ctx.ClearMemory(d_odata.DevicePointer, 0, d_odata.TotalSizeInBytes);
            PLKernel.BlockDimensions = threads;
            PLKernel.GridDimensions  = grid;
            stopwatch.Start();
            for (int i = 0; i < NUM_REPS; i++)
            {
                PLKernel.Run(d_odata.DevicePointer, (int)(d_odata.Pitch / sizeof(float)), nx, ny, x_shift, y_shift);
            }
            stopwatch.Stop();
            stopwatch.StopEvent.Synchronize();
            float timePL = stopwatch.GetElapsedTime();

            // check results
            d_odata.CopyToHost(h_odata);

            bool res = cutComparef(gold, h_odata);

            bool success = true;

            if (res == false)
            {
                Console.Write("*** shiftPitchLinear failed ***\n");
                success = false;
            }

            // ----------
            // shiftArray
            // ----------

            ctx.ClearMemory(d_odata.DevicePointer, 0, d_odata.TotalSizeInBytes);
            ArrayKernel.BlockDimensions = threads;
            ArrayKernel.GridDimensions  = grid;
            stopwatch.Start();
            for (int i = 0; i < NUM_REPS; i++)
            {
                ArrayKernel.Run(d_odata.DevicePointer, (int)(d_odata.Pitch / sizeof(float)), nx, ny, x_shift, y_shift);
            }

            stopwatch.Stop();
            stopwatch.StopEvent.Synchronize();
            float timeArray = stopwatch.GetElapsedTime();

            // check results
            d_odata.CopyToHost(h_odata);

            res = cutComparef(gold, h_odata);

            if (res == false)
            {
                Console.Write("*** shiftArray failed ***\n");
                success = false;
            }

            float bandwidthPL    = 2.0f * 1000.0f * nx * ny * sizeof(float) / (1e+9f) / (timePL / NUM_REPS);
            float bandwidthArray = 2.0f * 1000.0f * nx * ny * sizeof(float) / (1e+9f) / (timeArray / NUM_REPS);

            Console.Write("\nBandwidth (GB/s) for pitch linear: {0}; for array: {1}\n",
                          bandwidthPL, bandwidthArray);

            float fetchRatePL    = nx * ny / 1e+6f / (timePL / (1000.0f * NUM_REPS));
            float fetchRateArray = nx * ny / 1e+6f / (timeArray / (1000.0f * NUM_REPS));

            Console.Write("\nTexture fetch rate (Mpix/s) for pitch linear: {0}; for array: {1}\n\n",
                          fetchRatePL, fetchRateArray);


            // cleanup
            texRefPL.Dispose();
            texRefArray.Dispose();
            d_idataPL.Dispose();
            d_idataArray.Dispose();
            d_odata.Dispose();
            stopwatch.Dispose();
            ctx.Dispose();

            ShrQATest.shrQAFinishExit(args, (success == true) ? ShrQATest.eQAstatus.QA_PASSED : ShrQATest.eQAstatus.QA_FAILED);
        }
Example #3
0
        private void initGLAndCuda()
        {
            //Create render target control
            m_renderControl              = new OpenTK.GLControl(GraphicsMode.Default, 1, 0, GraphicsContextFlags.Default);
            m_renderControl.Dock         = DockStyle.Fill;
            m_renderControl.BackColor    = Color.White;
            m_renderControl.BorderStyle  = BorderStyle.FixedSingle;
            m_renderControl.KeyDown     += new KeyEventHandler(m_renderControl_KeyDown);
            m_renderControl.MouseMove   += new MouseEventHandler(m_renderControl_MouseMove);
            m_renderControl.MouseDown   += new MouseEventHandler(m_renderControl_MouseDown);
            m_renderControl.SizeChanged += new EventHandler(m_renderControl_SizeChanged);

            panel1.Controls.Add(m_renderControl);
            Console.WriteLine("   OpenGL device is Available");

            int deviceID = CudaContext.GetMaxGflopsDeviceId();

            ctx = CudaContext.CreateOpenGLContext(deviceID, CUCtxFlags.BlockingSync);
            string console = string.Format("CUDA device [{0}] has {1} Multi-Processors", ctx.GetDeviceName(), ctx.GetDeviceInfo().MultiProcessorCount);

            Console.WriteLine(console);

            CUmodule module = ctx.LoadModulePTX("kernel.ptx");

            addForces_k       = new CudaKernel("addForces_k", module, ctx);
            advectVelocity_k  = new CudaKernel("advectVelocity_k", module, ctx);
            diffuseProject_k  = new CudaKernel("diffuseProject_k", module, ctx);
            updateVelocity_k  = new CudaKernel("updateVelocity_k", module, ctx);
            advectParticles_k = new CudaKernel("advectParticles_OGL", module, ctx);

            hvfield = new cData[DS];
            dvfield = new CudaPitchedDeviceVariable <cData>(DIM, DIM);
            tPitch  = dvfield.Pitch;

            dvfield.CopyToDevice(hvfield);

            vxfield = new CudaDeviceVariable <cData>(DS);
            vyfield = new CudaDeviceVariable <cData>(DS);

            // Create particle array
            particles = new cData[DS];
            initParticles(particles, DIM, DIM);

            // TODO: update kernels to use the new unpadded memory layout for perf
            // rather than the old FFTW-compatible layout
            planr2c = new CudaFFTPlan2D(DIM, DIM, cufftType.R2C, Compatibility.FFTWPadding);
            planc2r = new CudaFFTPlan2D(DIM, DIM, cufftType.C2R, Compatibility.FFTWPadding);

            GL.GenBuffers(1, out vbo);
            GL.BindBuffer(BufferTarget.ArrayBuffer, vbo);
            GL.BufferData <cData>(BufferTarget.ArrayBuffer, new IntPtr(cData.SizeOf * DS), particles, BufferUsageHint.DynamicDraw);
            int bsize;

            GL.GetBufferParameter(BufferTarget.ArrayBuffer, BufferParameterName.BufferSize, out bsize);

            if (bsize != DS * cData.SizeOf)
            {
                throw new Exception("Sizes don't match.");
            }

            GL.BindBuffer(BufferTarget.ArrayBuffer, 0);

            cuda_vbo_resource = new CudaGraphicsInteropResourceCollection();
            cuda_vbo_resource.Add(new CudaOpenGLBufferInteropResource(vbo, CUGraphicsRegisterFlags.None));

            texref = new CudaTextureArray2D(advectVelocity_k, "texref", CUAddressMode.Wrap, CUFilterMode.Linear, 0, CUArrayFormat.Float, DIM, DIM, CudaArray2DNumChannels.Two);

            stopwatch = new CudaStopWatch(CUEventFlags.Default);

            reshape();
            isInit = true;
            display();
        }