public unsafe void InceptionPoolPipeline()
        {
            float[,] x = WeightsProvider.NewFullyConnectedWeights(TensorInfo.Linear(10), 12 * 12 * 3, WeightsInitializationMode.GlorotNormal).AsSpan().AsMatrix(10, 12 * 12 * 3);
            CuDnnPoolingLayer       pool      = new CuDnnPoolingLayer(TensorInfo.Image <Rgb24>(12, 12), PoolingInfo.New(PoolingMode.Max, 3, 3, 1, 1, 1, 1), ActivationType.ReLU);
            CuDnnConvolutionalLayer conv      = new CuDnnConvolutionalLayer(pool.OutputInfo, ConvolutionInfo.New(ConvolutionMode.CrossCorrelation), (1, 1), 10, ActivationType.ReLU, BiasInitializationMode.Gaussian);
            CuDnnInceptionLayer     inception = new CuDnnInceptionLayer(TensorInfo.Image <Rgb24>(12, 12), InceptionInfo.New(3, 2, 2, 2, 2, PoolingMode.Max, 10));

            fixed(float *pw = inception.Weights)
            Unsafe.InitBlock(pw, 0, (uint)(sizeof(float) * inception.Weights.Length));

            Buffer.BlockCopy(conv.Weights, 0, inception.Weights, sizeof(float) * (3 * 3 + 3 * 2 + 3 * 3 * 2 * 2 + 3 * 2 + 5 * 5 * 2 * 2), sizeof(float) * conv.Weights.Length);
            Buffer.BlockCopy(conv.Biases, 0, inception.Biases, sizeof(float) * (3 + 2 + 2 + 2 + 2), sizeof(float) * conv.Biases.Length);
            fixed(float *px = x)
            {
                // Forward + Z
                Tensor.Reshape(px, x.GetLength(0), x.GetLength(1), out Tensor xTensor);
                pool.Forward(xTensor, out Tensor zTemp, out Tensor aTemp);
                conv.Forward(aTemp, out Tensor zConv, out Tensor aConv);
                inception.Forward(xTensor, out Tensor zInc, out Tensor aInc);
                Tensor.New(zConv.Entities, zConv.Length, out Tensor reshaped);
                float *pzInc = (float *)zInc.Ptr.ToPointer() + 12 * 12 * (3 + 2 + 2), preshaped = (float *)reshaped.Ptr.ToPointer();

                for (int i = 0; i < zConv.Entities; i++)
                {
                    Buffer.MemoryCopy(pzInc + i * zInc.Length, preshaped + i * zConv.Length, sizeof(float) * zConv.Length, sizeof(float) * zConv.Length);
                }
                Assert.IsTrue(reshaped.ContentEquals(zConv));

                // A
                float *paInc = (float *)aInc.Ptr.ToPointer() + 12 * 12 * (3 + 2 + 2);

                for (int i = 0; i < aConv.Entities; i++)
                {
                    Buffer.MemoryCopy(paInc + i * aInc.Length, preshaped + i * aConv.Length, sizeof(float) * aConv.Length, sizeof(float) * aConv.Length);
                }
                Assert.IsTrue(reshaped.ContentEquals(aConv));

                // Backpropagation
                Tensor.Like(aTemp, out Tensor convdx);
                Tensor.Like(xTensor, out Tensor pooldx);
                Tensor.Like(xTensor, out Tensor incdx);
                conv.Backpropagate(aTemp, zConv, aConv, convdx, out Tensor convdJdw, out Tensor convdJdb);
                pool.Backpropagate(xTensor, zTemp, convdx, pooldx);
                inception.Backpropagate(xTensor, zInc, aInc, incdx, out Tensor incdJdw, out Tensor incdJdb);
                Assert.IsTrue(incdx.ContentEquals(pooldx));

                // Gradient
                Tensor.Reshape((float *)incdJdw.Ptr.ToPointer() + (3 * 3 + 3 * 2 + 3 * 3 * 2 * 2 + 3 * 2 + 5 * 5 * 2 * 2), 1, convdJdw.Size, out Tensor dJdwInc0);
                Tensor.Reshape((float *)incdJdb.Ptr.ToPointer() + 11, 1, convdJdb.Size, out Tensor dJdbInc0);
                Assert.IsTrue(convdJdw.ContentEquals(dJdwInc0, 1e-5f));
                Assert.IsTrue(convdJdb.ContentEquals(dJdbInc0, 1e-5f));

                // Cleanup
                Tensor.Free(zTemp, aTemp, zConv, aConv, zInc, aInc, reshaped, convdx, pooldx, incdx, convdJdw, convdJdb, incdJdw, incdJdb);
            }
        }
        public unsafe void Inception1x1()
        {
            float[,] x = WeightsProvider.NewFullyConnectedWeights(TensorInfo.Linear(10), 32 * 32 * 3, WeightsInitializationMode.GlorotNormal).AsSpan().AsMatrix(10, 32 * 32 * 3);
            CuDnnConvolutionalLayer conv      = new CuDnnConvolutionalLayer(TensorInfo.Image <Rgb24>(32, 32), ConvolutionInfo.New(ConvolutionMode.CrossCorrelation), (1, 1), 10, ActivationType.ReLU, BiasInitializationMode.Gaussian);
            CuDnnInceptionLayer     inception = new CuDnnInceptionLayer(conv.InputInfo, InceptionInfo.New(10, 10, 10, 10, 10, PoolingMode.Max, 10));

            fixed(float *pw = inception.Weights)
            Unsafe.InitBlock(pw, 0, (uint)(sizeof(float) * inception.Weights.Length));

            Buffer.BlockCopy(conv.Weights, 0, inception.Weights, 0, sizeof(float) * conv.Weights.Length);
            Buffer.BlockCopy(conv.Biases, 0, inception.Biases, 0, sizeof(float) * conv.Biases.Length);
            fixed(float *px = x)
            {
                // Forward + Z
                Tensor.Reshape(px, x.GetLength(0), x.GetLength(1), out Tensor xTensor);
                conv.Forward(xTensor, out Tensor zConv, out Tensor aConv);
                inception.Forward(xTensor, out Tensor zInc, out Tensor aInc);
                Tensor.New(zConv.Entities, zConv.Length, out Tensor reshaped);
                float *pzInc = (float *)zInc.Ptr.ToPointer(), preshaped = (float *)reshaped.Ptr.ToPointer();

                for (int i = 0; i < zConv.Entities; i++)
                {
                    Buffer.MemoryCopy(pzInc + i * zInc.Length, preshaped + i * zConv.Length, sizeof(float) * zConv.Length, sizeof(float) * zConv.Length);
                }
                Assert.IsTrue(reshaped.ContentEquals(zConv));

                // A
                float *paInc = (float *)aInc.Ptr.ToPointer();

                for (int i = 0; i < aConv.Entities; i++)
                {
                    Buffer.MemoryCopy(paInc + i * aInc.Length, preshaped + i * aConv.Length, sizeof(float) * aConv.Length, sizeof(float) * aConv.Length);
                }
                Assert.IsTrue(reshaped.ContentEquals(aConv));

                // Backpropagate
                Tensor.Like(xTensor, out Tensor dx1);
                Tensor.Like(xTensor, out Tensor dx2);
                conv.Backpropagate(xTensor, zConv, aConv, dx1, out Tensor dJdw1, out Tensor dJdb1);
                inception.Backpropagate(xTensor, zInc, aInc, dx2, out Tensor dJdw2, out Tensor dJdb2);
                Assert.IsTrue(dx1.ContentEquals(dx2));
                Tensor.Reshape((float *)dJdw2.Ptr.ToPointer(), 1, dJdw1.Size, out dJdw2);
                Tensor.Reshape((float *)dJdb2.Ptr.ToPointer(), 1, dJdb1.Size, out dJdb2);
                Assert.IsTrue(dJdw1.ContentEquals(dJdw2, 1e-5f));
                Assert.IsTrue(dJdb1.ContentEquals(dJdb2, 1e-5f));

                // Cleanup
                Tensor.Free(zConv, aConv, zInc, aInc, reshaped, dx1, dx2, dJdw1, dJdw2, dJdb1, dJdb2);
            }
        }
Example #3
0
        public unsafe void Inception3x3Pipeline()
        {
            float[,] x = WeightsProvider.NewFullyConnectedWeights(TensorInfo.Linear(10), 32 * 32 * 3, WeightsInitializationMode.GlorotNormal).AsSpan().AsMatrix(10, 32 * 32 * 3);
            CuDnnConvolutionalLayer
                conv1 = new CuDnnConvolutionalLayer(TensorInfo.Image <Rgb24>(32, 32), ConvolutionInfo.New(ConvolutionMode.CrossCorrelation), (1, 1), 10, ActivationFunctionType.ReLU, BiasInitializationMode.Gaussian),
                conv2 = new CuDnnConvolutionalLayer(conv1.OutputInfo, ConvolutionInfo.New(ConvolutionMode.CrossCorrelation, 1, 1), (3, 3), 10, ActivationFunctionType.ReLU, BiasInitializationMode.Gaussian);
            CuDnnInceptionLayer inception = new CuDnnInceptionLayer(TensorInfo.Image <Rgb24>(32, 32), InceptionInfo.New(10, 10, 10, 10, 10, PoolingMode.Max, 10));

            fixed(float *pw = inception.Weights)
            Unsafe.InitBlock(pw, 0, (uint)(sizeof(float) * inception.Weights.Length));

            Buffer.BlockCopy(conv1.Weights, 0, inception.Weights, sizeof(float) * 3 * 10, sizeof(float) * conv1.Weights.Length);
            Buffer.BlockCopy(conv2.Weights, 0, inception.Weights, sizeof(float) * 3 * 10 + sizeof(float) * conv1.Weights.Length, sizeof(float) * conv2.Weights.Length);
            Buffer.BlockCopy(conv1.Biases, 0, inception.Biases, sizeof(float) * 10, sizeof(float) * conv1.Biases.Length);
            Buffer.BlockCopy(conv2.Biases, 0, inception.Biases, sizeof(float) * 20, sizeof(float) * conv2.Biases.Length);
            fixed(float *px = x)
            {
                // Forward + Z
                Tensor.Reshape(px, x.GetLength(0), x.GetLength(1), out Tensor xTensor);
                conv1.Forward(xTensor, out Tensor zTemp, out Tensor aTemp);
                conv2.Forward(aTemp, out Tensor zConv, out Tensor aConv);
                inception.Forward(xTensor, out Tensor zInc, out Tensor aInc);
                Tensor.New(zConv.Entities, zConv.Length, out Tensor reshaped);
                float *pzInc = (float *)zInc.Ptr.ToPointer() + 32 * 32 * 10, preshaped = (float *)reshaped.Ptr.ToPointer();

                for (int i = 0; i < zConv.Entities; i++)
                {
                    Buffer.MemoryCopy(pzInc + i * zInc.Length, preshaped + i * zConv.Length, sizeof(float) * zConv.Length, sizeof(float) * zConv.Length);
                }
                Assert.IsTrue(reshaped.ContentEquals(zConv));

                // A
                float *paInc = (float *)aInc.Ptr.ToPointer() + 32 * 32 * 10;

                for (int i = 0; i < aConv.Entities; i++)
                {
                    Buffer.MemoryCopy(paInc + i * aInc.Length, preshaped + i * aConv.Length, sizeof(float) * aConv.Length, sizeof(float) * aConv.Length);
                }
                Assert.IsTrue(reshaped.ContentEquals(aConv));

                // Backpropagation
                Tensor.New(xTensor.Entities, xTensor.Length, out Tensor z1);
                KerasWeightsProvider.FillWithHeEtAlUniform(z1, 10);
                z1.Duplicate(out Tensor z2);
                conv2.Backpropagate(Tensor.Null, aConv, zTemp, conv1.ActivationFunctions.ActivationPrime);
                conv1.Backpropagate(Tensor.Null, zTemp, z1, ActivationFunctions.ReLUPrime);
                inception.Backpropagate(xTensor, aInc, z2, ActivationFunctions.ReLUPrime);
                Assert.IsTrue(z1.ContentEquals(z2));

                // Gradient
                Tensor.New(xTensor.Entities, xTensor.Length, out Tensor a);
                KerasWeightsProvider.FillWithHeEtAlUniform(a, 10);
                conv1.ComputeGradient(a, zTemp, out Tensor dJdwConv1, out Tensor dJdbConv1);
                conv2.ComputeGradient(aTemp, aConv, out Tensor dJdwConv2, out Tensor dJdbConv2);
                inception.ComputeGradient(a, aInc, out Tensor dJdwInc, out Tensor dJdbInc);
                Tensor.Reshape((float *)dJdwInc.Ptr.ToPointer() + 30, 1, dJdwConv1.Size, out Tensor dJdwInc0);
                Tensor.Reshape((float *)dJdbInc.Ptr.ToPointer() + 10, 1, dJdbConv1.Size, out Tensor dJdbInc0);
                Assert.IsTrue(dJdwConv1.ContentEquals(dJdwInc0, 1e-5f));
                Assert.IsTrue(dJdbConv1.ContentEquals(dJdbInc0, 1e-5f));
                Tensor.Reshape((float *)dJdwInc.Ptr.ToPointer() + 30 + dJdwConv1.Size, 1, dJdwConv2.Size, out Tensor dJdwInc1);
                Tensor.Reshape((float *)dJdbInc.Ptr.ToPointer() + 20, 1, dJdbConv2.Size, out Tensor dJdbInc1);
                Assert.IsTrue(dJdwConv2.ContentEquals(dJdwInc1, 1e-5f));
                Assert.IsTrue(dJdbConv2.ContentEquals(dJdbInc1, 1e-5f));

                // Cleanup
                z1.Free();
                z2.Free();
                zTemp.Free();
                zConv.Free();
                zInc.Free();
                aConv.Free();
                aInc.Free();
                reshaped.Free();
            }
        }