public static void Main(string[] args) { // Keras speed with the same: 60 ms. /*ReaderKerasModel reader = new ReaderKerasModel("test_cnn_model.json"); * SequentialModel model = reader.GetSequentialExecutor(); * * Console.WriteLine((model.GetSummary() as SequentialModelData).GetStringRepresentation()); * * Console.ReadKey(); * int[] idx = { 1,2,3}; * * Console.WriteLine(idx[1]); * Console.ReadKey();*/ Conv2DLayer layer = new Conv2DLayer(0, 0, 1, 1); Data2D input = new Data2D(6, 5, 3, 1); input[0, 0, 0, 0] = 1; input[0, 1, 0, 0] = 2; input[0, 2, 0, 0] = 2; input[0, 3, 0, 0] = 1; input[0, 4, 0, 0] = 4; input[1, 0, 0, 0] = 3; input[1, 1, 0, 0] = 1; input[1, 2, 0, 0] = 0; input[1, 3, 0, 0] = 2; input[1, 4, 0, 0] = 1; input[2, 0, 0, 0] = 0; input[2, 1, 0, 0] = 2; input[2, 2, 0, 0] = 2; input[2, 3, 0, 0] = 5; input[2, 4, 0, 0] = 2; input[3, 0, 0, 0] = 6; input[3, 1, 0, 0] = -2; input[3, 2, 0, 0] = -1; input[3, 3, 0, 0] = 3; input[3, 4, 0, 0] = 1; input[4, 0, 0, 0] = 2; input[4, 1, 0, 0] = 1; input[4, 2, 0, 0] = 2; input[4, 3, 0, 0] = 4; input[4, 4, 0, 0] = 0; input[5, 0, 0, 0] = 5; input[5, 1, 0, 0] = -3; input[5, 2, 0, 0] = -1; input[5, 3, 0, 0] = -4; input[5, 4, 0, 0] = 0; input[0, 0, 1, 0] = 2; input[0, 1, 1, 0] = 0; input[0, 2, 1, 0] = 2; input[0, 3, 1, 0] = -1; input[0, 4, 1, 0] = 3; input[1, 0, 1, 0] = 2; input[1, 1, 1, 0] = 5; input[1, 2, 1, 0] = -1; input[1, 3, 1, 0] = 3; input[1, 4, 1, 0] = 5; input[2, 0, 1, 0] = 1; input[2, 1, 1, 0] = 1; input[2, 2, 1, 0] = 1; input[2, 3, 1, 0] = 0; input[2, 4, 1, 0] = 1; input[3, 0, 1, 0] = -3; input[3, 1, 1, 0] = 2; input[3, 2, 1, 0] = -1; input[3, 3, 1, 0] = 4; input[3, 4, 1, 0] = 1; input[4, 0, 1, 0] = 2; input[4, 1, 1, 0] = 1; input[4, 2, 1, 0] = 2; input[4, 3, 1, 0] = 2; input[4, 4, 1, 0] = 1; input[5, 0, 1, 0] = 0; input[5, 1, 1, 0] = -3; input[5, 2, 1, 0] = 1; input[5, 3, 1, 0] = -2; input[5, 4, 1, 0] = -1; input[0, 0, 2, 0] = 4; input[0, 1, 2, 0] = 5; input[0, 2, 2, 0] = 0; input[0, 3, 2, 0] = -1; input[0, 4, 2, 0] = -3; input[1, 0, 2, 0] = 2; input[1, 1, 2, 0] = 3; input[1, 2, 2, 0] = 1; input[1, 3, 2, 0] = 6; input[1, 4, 2, 0] = 0; input[2, 0, 2, 0] = 0; input[2, 1, 2, 0] = -4; input[2, 2, 2, 0] = -3; input[2, 3, 2, 0] = -2; input[2, 4, 2, 0] = -4; input[3, 0, 2, 0] = 4; input[3, 1, 2, 0] = 2; input[3, 2, 2, 0] = 1; input[3, 3, 2, 0] = 0; input[3, 4, 2, 0] = 4; input[4, 0, 2, 0] = 3; input[4, 1, 2, 0] = 3; input[4, 2, 2, 0] = 0; input[4, 3, 2, 0] = 1; input[4, 4, 2, 0] = 1; input[5, 0, 2, 0] = -2; input[5, 1, 2, 0] = 1; input[5, 2, 2, 0] = 1; input[5, 3, 2, 0] = 0; input[5, 4, 2, 0] = 5; Data2D kernel = new Data2D(3, 3, 3, 1); kernel[0, 0, 0, 0] = 1; kernel[0, 1, 0, 0] = 1; kernel[0, 2, 0, 0] = 0; kernel[1, 0, 0, 0] = 2; kernel[1, 1, 0, 0] = 0; kernel[1, 2, 0, 0] = 0; kernel[2, 0, 0, 0] = 1; kernel[2, 1, 0, 0] = 2; kernel[2, 2, 0, 0] = 1; kernel[0, 0, 1, 0] = 3; kernel[0, 1, 1, 0] = 1; kernel[0, 2, 1, 0] = -1; kernel[1, 0, 1, 0] = 2; kernel[1, 1, 1, 0] = -1; kernel[1, 2, 1, 0] = -2; kernel[2, 0, 1, 0] = 0; kernel[2, 1, 1, 0] = 1; kernel[2, 2, 1, 0] = 2; kernel[0, 0, 2, 0] = 0; kernel[0, 1, 2, 0] = 1; kernel[0, 2, 2, 0] = 1; kernel[1, 0, 2, 0] = -1; kernel[1, 1, 2, 0] = 2; kernel[1, 2, 2, 0] = 1; kernel[2, 0, 2, 0] = 3; kernel[2, 1, 2, 0] = 0; kernel[2, 2, 2, 0] = 1; layer.SetWeights(kernel); layer.SetInput(input); layer.Execute(); Data2D output = layer.GetOutput() as Data2D; }
public void Test_Conv2D_Null_Weights() { Data2D weights = null; Conv2DLayer conv = new Conv2DLayer(1, 1, 1, 1); conv.SetWeights(weights); }
public void Test_Conv2D_DifferentData_Weights() { DataArray weights = new DataArray(5); Conv2DLayer conv = new Conv2DLayer(1, 1, 1, 1); conv.SetWeights(weights); }
public void Test_Conv2D_Null_Input() { Data2D data = null; Data2D weights = new Data2D(3, 3, 3, 3); Conv2DLayer conv = new Conv2DLayer(1, 1, 1, 1); conv.SetWeights(weights); conv.SetInput(data); }
public void Test_Conv2D_DifferentData_Input() { DataArray data = new DataArray(5); Data2D weights = new Data2D(3, 3, 3, 3); Conv2DLayer conv = new Conv2DLayer(1, 1, 1, 1); conv.SetWeights(weights); conv.SetInput(data); }
public void Test_Conv2D_Execute() { // Initialize data. Data2D data = new Data2D(3, 3, 2, 1); data[0, 0, 0, 0] = 1; data[1, 0, 0, 0] = 2; data[2, 0, 0, 0] = 0; data[0, 1, 0, 0] = 3; data[1, 1, 0, 0] = 4; data[2, 1, 0, 0] = 0; data[0, 2, 0, 0] = 2; data[1, 2, 0, 0] = 2; data[2, 2, 0, 0] = 0; data[0, 0, 1, 0] = 0; data[1, 0, 1, 0] = 3; data[2, 0, 1, 0] = 1; data[0, 1, 1, 0] = 1; data[1, 1, 1, 0] = 1; data[2, 1, 1, 0] = 1; data[0, 2, 1, 0] = 3; data[1, 2, 1, 0] = 1; data[2, 2, 1, 0] = 0; // Initialize weights. Data2D weights = new Data2D(2, 2, 2, 1); weights[0, 0, 0, 0] = 1; weights[1, 0, 0, 0] = 2; weights[0, 1, 0, 0] = 2; weights[1, 1, 0, 0] = 3; weights[0, 0, 1, 0] = 1; weights[1, 0, 1, 0] = 1; weights[0, 1, 1, 0] = 1; weights[1, 1, 1, 0] = 3; Conv2DLayer conv = new Conv2DLayer(0, 0, 1, 1); conv.SetWeights(weights); conv.SetInput(data); conv.Execute(); Data2D output = conv.GetOutput() as Data2D; // Checking sizes Dimension dim = output.GetDimension(); Assert.AreEqual(dim.b, 1); Assert.AreEqual(dim.c, 1); Assert.AreEqual(dim.h, 2); Assert.AreEqual(dim.w, 2); // Checking calculation Assert.AreEqual(output[0, 0, 0, 0], 30.0, 0.0000001); Assert.AreEqual(output[1, 0, 0, 0], 18.0, 0.0000001); Assert.AreEqual(output[0, 1, 0, 0], 29.0, 0.0000001); Assert.AreEqual(output[1, 1, 0, 0], 11.0, 0.0000001); }