Example #1
0
        public void SpeedTest()
        {
            int inwidth = 512, inchannels = 32, outchannels = 32, ksize = 3, stride = 2;
            int outwidth = (inwidth - ksize) / stride + 1;

            OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map1D(inchannels, inwidth));
            OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel1D(inchannels, outchannels / 2, ksize));

            OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map1D(outchannels, outwidth));

            ComplexConvolution1D ope = new ComplexConvolution1D(inwidth, inchannels, outchannels, ksize, stride);

            Stopwatch sw = new Stopwatch();

            sw.Start();

            ope.Execute(x_tensor, w_tensor, y_tensor);
            ope.Execute(x_tensor, w_tensor, y_tensor);
            ope.Execute(x_tensor, w_tensor, y_tensor);
            ope.Execute(x_tensor, w_tensor, y_tensor);

            sw.Stop();

            Console.WriteLine($"{sw.ElapsedMilliseconds / 4} msec");
        }
Example #2
0
        public void ExecuteTest()
        {
            float max_err = 0;

            foreach (int batch in new int[] { 1, 2, 3 })
            {
                foreach (int inchannels in new int[] { 2, 4, 10, 20 })
                {
                    foreach (int outchannels in new int[] { 6, 14 })
                    {
                        foreach (int kwidth in new int[] { 1, 3, 5 })
                        {
                            foreach (int stride in new int[] { 1, 2, 3 })
                            {
                                foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                {
                                    int outwidth = (inwidth - kwidth) / stride + 1;

                                    float[] xval = (new float[inwidth * inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                    float[] wval = (new float[kwidth * inchannels * outchannels / 2]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                    System.Numerics.Complex[] xcval = (new System.Numerics.Complex[xval.Length / 2])
                                                                      .Select((_, idx) => new System.Numerics.Complex(xval[idx * 2], xval[idx * 2 + 1])).ToArray();

                                    System.Numerics.Complex[] wcval = (new System.Numerics.Complex[wval.Length / 2])
                                                                      .Select((_, idx) => new System.Numerics.Complex(wval[idx * 2], wval[idx * 2 + 1])).ToArray();

                                    ComplexMap1D    x = new ComplexMap1D(inchannels / 2, inwidth, batch, xcval);
                                    ComplexFilter1D w = new ComplexFilter1D(inchannels / 2, outchannels / 2, kwidth, wcval);

                                    ComplexMap1D y = Reference(x, w, kwidth, stride);

                                    OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map1D(inchannels, inwidth, batch), xval);
                                    OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel1D(inchannels, outchannels / 2, kwidth), wval);

                                    OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map1D(outchannels, outwidth, batch));

                                    ComplexConvolution1D ope = new ComplexConvolution1D(inwidth, inchannels, outchannels, kwidth, stride, gradmode: false, batch);

                                    ope.Execute(x_tensor, w_tensor, y_tensor);

                                    float[] y_expect = y.ToArray();
                                    float[] y_actual = y_tensor.State;

                                    CollectionAssert.AreEqual(xval, x_tensor.State);
                                    CollectionAssert.AreEqual(wval, w_tensor.State);

                                    AssertError.Tolerance(y_expect, y_actual, 1e-7f, 1e-5f, ref max_err, $"mismatch value {inchannels},{outchannels},{kwidth},{stride},{inwidth},{batch}");

                                    Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{stride},{inwidth},{batch}");
                                }
                            }
                        }
                    }
                }
            }

            Console.WriteLine($"maxerr:{max_err}");
        }
Example #3
0
        public void OverflowTest()
        {
            foreach (bool gradmode in new bool[] { false, true })
            {
                foreach (int batch in new int[] { 1, 2, 3 })
                {
                    foreach (int inchannels in new int[] { 2, 4, 10, 20 })
                    {
                        foreach (int outchannels in new int[] { 6, 14 })
                        {
                            foreach (int kwidth in new int[] { 1, 3, 5 })
                            {
                                foreach (int stride in new int[] { 1, 2, 3 })
                                {
                                    foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                    {
                                        int outwidth = (inwidth - kwidth) / stride + 1;

                                        float[] xval = (new float[inwidth * inchannels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                        float[] wval = (new float[kwidth * inchannels * outchannels / 2]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                        OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map1D(inchannels, inwidth, batch), xval);
                                        OverflowCheckedTensor w_tensor = new OverflowCheckedTensor(Shape.Kernel1D(inchannels, outchannels / 2, kwidth), wval);

                                        OverflowCheckedTensor y_tensor = new OverflowCheckedTensor(Shape.Map1D(outchannels, outwidth, batch));

                                        ComplexConvolution1D ope = new ComplexConvolution1D(inwidth, inchannels, outchannels, kwidth, stride, gradmode, batch);

                                        ope.Execute(x_tensor, w_tensor, y_tensor);

                                        CollectionAssert.AreEqual(xval, x_tensor.State);
                                        CollectionAssert.AreEqual(wval, w_tensor.State);

                                        y_tensor.CheckOverflow();

                                        Console.WriteLine($"pass: {inchannels},{outchannels},{kwidth},{stride},{inwidth},{batch},{gradmode}");
                                    }
                                }
                            }
                        }
                    }
                }
            }
        }