Example #1
0
        /// <summary>
        /// breadth-first search from multiple sources
        /// </summary>
        /// <param name="g"></param>
        /// <param name="sources"></param>
        private void Bfs(Graph g, IEnumerable <Integer> sources)
        {
            var q = new Collections.Queue <Integer>();

            foreach (int s in sources)
            {
                _marked[s] = true;
                _distTo[s] = 0;
                q.Enqueue(s);
            }
            while (!q.IsEmpty())
            {
                int v = q.Dequeue();
                foreach (int w in g.Adj(v))
                {
                    if (_marked[w])
                    {
                        continue;
                    }
                    _edgeTo[w] = v;
                    _distTo[w] = _distTo[v] + 1;
                    _marked[w] = true;
                    q.Enqueue(w);
                }
            }
        }
Example #2
0
        /// <summary>
        /// breadth-first search from a single source
        /// </summary>
        /// <param name="g"></param>
        /// <param name="s"></param>
        private void Bfs(Graph g, int s)
        {
            var q = new Collections.Queue <Integer>();

            for (var v = 0; v < g.V; v++)
            {
                _distTo[v] = INFINITY;
            }
            _distTo[s] = 0;
            _marked[s] = true;
            q.Enqueue(s);

            while (!q.IsEmpty())
            {
                int v = q.Dequeue();
                foreach (int w in g.Adj(v))
                {
                    if (_marked[w])
                    {
                        continue;
                    }
                    _edgeTo[w] = v;
                    _distTo[w] = _distTo[v] + 1;
                    _marked[w] = true;
                    q.Enqueue(w);
                }
            }
        }
Example #3
0
        private readonly int[] _rank;                        // rank[v] = order where vertex v appers in order

        /// <summary>
        /// Determines whether the digraph <tt>G</tt> has a topological order and, if so,
        /// finds such a topological order.
        /// </summary>
        /// <param name="g">g the digraph</param>
        public TopologicalX(Digraph g)
        {
            // indegrees of remaining vertices
            var indegree = new int[g.V];

            for (var v = 0; v < g.V; v++)
            {
                indegree[v] = g.Indegree(v);
            }

            // initialize
            _rank  = new int[g.V];
            _order = new Collections.Queue <Integer>();
            var count = 0;

            // initialize queue to contain all vertices with indegree = 0
            var queue = new Collections.Queue <Integer>();

            for (var v = 0; v < g.V; v++)
            {
                if (indegree[v] == 0)
                {
                    queue.Enqueue(v);
                }
            }

            for (var j = 0; !queue.IsEmpty(); j++)
            {
                int v = queue.Dequeue();
                _order.Enqueue(v);
                _rank[v] = count++;
                foreach (int w in g.Adj(v))
                {
                    indegree[w]--;
                    if (indegree[w] == 0)
                    {
                        queue.Enqueue(w);
                    }
                }
            }

            // there is a directed cycle in subgraph of vertices with indegree >= 1.
            if (count != g.V)
            {
                _order = null;
            }

            //assert check(G);
        }
Example #4
0
        private void Bfs(Graph g, int s)
        {
            var q = new Collections.Queue <Integer>();

            _color[s]  = WHITE;
            _marked[s] = true;
            q.Enqueue(s);

            while (!q.IsEmpty())
            {
                int v = q.Dequeue();
                foreach (int w in g.Adj(v))
                {
                    if (!_marked[w])
                    {
                        _marked[w] = true;
                        _edgeTo[w] = v;
                        _color[w]  = !_color[v];
                        q.Enqueue(w);
                    }
                    else if (_color[w] == _color[v])
                    {
                        _isBipartite = false;

                        // to form odd cycle, consider s-v path and s-w path
                        // and let x be closest node to v and w common to two paths
                        // then (w-x path) + (x-v path) + (edge v-w) is an odd-length cycle
                        // Note: distTo[v] == distTo[w];
                        _cycle = new Collections.Queue <Integer>();
                        var stack = new Collections.Stack <Integer>();
                        int x = v, y = w;
                        while (x != y)
                        {
                            stack.Push(x);
                            _cycle.Enqueue(y);
                            x = _edgeTo[x];
                            y = _edgeTo[y];
                        }
                        stack.Push(x);
                        while (!stack.IsEmpty())
                        {
                            _cycle.Enqueue(stack.Pop());
                        }
                        _cycle.Enqueue(w);
                        return;
                    }
                }
            }
        }
Example #5
0
        /// <summary>
        /// Returns the Keys in the BST in level order (for debugging).
        /// </summary>
        /// <returns>the Keys in the BST in level order traversal, as an Iterable</returns>
        public IEnumerable <TKey> LevelOrder()
        {
            var keys  = new Collections.Queue <TKey>();
            var queue = new Collections.Queue <Node <TKey, TValue> >();

            queue.Enqueue(_root);
            while (!queue.IsEmpty())
            {
                var x = queue.Dequeue();
                if (x == null)
                {
                    continue;
                }
                keys.Enqueue(x.Key);
                queue.Enqueue(x.Left);
                queue.Enqueue(x.Right);
            }
            return(keys);
        }
Example #6
0
        private IEnumerable <DirectedEdge> _cycle;           // negative cycle (or null if no such cycle)

        /// <summary>
        /// Computes a shortest paths tree from <tt>s</tt> to every other vertex in
        /// the edge-weighted digraph <tt>G</tt>.
        /// </summary>
        /// <param name="g">g the acyclic digraph</param>
        /// <param name="s">s the source vertex</param>
        /// <exception cref="ArgumentException">unless 0 le; <tt>s</tt> le; <tt>V</tt> - 1</exception>

        public BellmanFordSP(EdgeWeightedDigraph g, int s)
        {
            _distTo  = new double[g.V];
            _edgeTo  = new DirectedEdge[g.V];
            _onQueue = new bool[g.V];
            for (var v = 0; v < g.V; v++)
            {
                _distTo[v] = double.PositiveInfinity;
            }
            _distTo[s] = 0.0;

            // Bellman-Ford algorithm
            _queue = new Collections.Queue <Integer>();
            _queue.Enqueue(s);
            _onQueue[s] = true;
            while (!_queue.IsEmpty() && !HasNegativeCycle())
            {
                int v = _queue.Dequeue();
                _onQueue[v] = false;
                Relax(g, v);
            }
        }
Example #7
0
        /// <summary>
        /// BFS from single source
        /// </summary>
        /// <param name="g"></param>
        /// <param name="s"></param>
        private void Bfs(Digraph g, int s)
        {
            var q = new Collections.Queue <Integer>();

            _marked[s] = true;
            _distTo[s] = 0;
            q.Enqueue(s);
            while (!q.IsEmpty())
            {
                int v = q.Dequeue();
                foreach (int w in g.Adj(v))
                {
                    if (!_marked[w])
                    {
                        _edgeTo[w] = v;
                        _distTo[w] = _distTo[v] + 1;
                        _marked[w] = true;
                        q.Enqueue(w);
                    }
                }
            }
        }
Example #8
0
        private void SetCookie(string val)
        {
//			Console.WriteLine("in set cookie 1 - got value : " + val);
            string[]          parts   = null;
            Collections.Queue options = null;
            Cookie            cookie  = null;

            options = new Collections.Queue(val.Split(';'));
            parts   = SplitValue((string)options.Dequeue());             // NAME=VALUE must be first

            cookie = new Cookie(parts[0], parts[1]);

            while (options.Count > 0)
            {
                parts = SplitValue((string)options.Dequeue());
                switch (parts [0])
                {
                case "COMMENT":
                    if (cookie.Comment == null)
                    {
                        cookie.Comment = parts[1];
                    }
                    break;

                case "COMMENTURL":
                    if (cookie.CommentUri == null)
                    {
                        cookie.CommentUri = new Uri(parts[1]);
                    }
                    break;

                case "DISCARD":
                    cookie.Discard = true;
                    break;

                case "DOMAIN":
                    if (cookie.Domain == "")
                    {
                        cookie.Domain = parts[1];
                    }
                    break;

                case "MAX-AGE":                         // RFC Style Set-Cookie2
                    if (cookie.Expires == DateTime.MinValue)
                    {
                        cookie.Expires = cookie.TimeStamp.AddSeconds(Int32.Parse(parts[1]));
                    }
                    break;

                case "EXPIRES":                         // Netscape Style Set-Cookie
                    if (cookie.Expires == DateTime.MinValue)
                    {
                        //FIXME: Does DateTime parse something like: "Sun, 17-Jan-2038 19:14:07 GMT"?
                        //cookie.Expires = DateTime.ParseExact (parts[1]);
                        cookie.Expires = DateTime.Now.AddDays(1);
                    }
                    break;

                case "PATH":
                    cookie.Path = parts[1];
                    break;

                case "PORT":
                    if (cookie.Port == null)
                    {
                        cookie.Port = parts[1];
                    }
                    break;

                case "SECURE":
                    cookie.Secure = true;
                    break;

                case "VERSION":
                    cookie.Version = Int32.Parse(parts[1]);
                    break;
                }         // switch
            }             // while

            if (_cookies == null)
            {
                _cookies = new CookieCollection();
            }

            if (cookie.Domain == "")
            {
                cookie.Domain = _uri.Host;
            }

//			Console.WriteLine("adding cookie " + cookie + " to collection");
            _cookies.Add(cookie);
//			Console.WriteLine("exit from method...");
        }
Example #9
0
        private readonly Collections.Stack <Integer> _cycle;     // the directed cycle; null if digraph is acyclic

        public DirectedCycleX(Digraph g)
        {
            // indegrees of remaining vertices
            var indegree = new int[g.V];

            for (var v = 0; v < g.V; v++)
            {
                indegree[v] = g.Indegree(v);
            }

            // initialize queue to contain all vertices with indegree = 0
            var queue = new Collections.Queue <Integer>();

            for (var v = 0; v < g.V; v++)
            {
                if (indegree[v] == 0)
                {
                    queue.Enqueue(v);
                }
            }

            for (var j = 0; !queue.IsEmpty(); j++)
            {
                int v = queue.Dequeue();
                foreach (int w in g.Adj(v))
                {
                    indegree[w]--;
                    if (indegree[w] == 0)
                    {
                        queue.Enqueue(w);
                    }
                }
            }

            // there is a directed cycle in subgraph of vertices with indegree >= 1.
            var edgeTo = new int[g.V];
            var root   = -1; // any vertex with indegree >= -1

            for (var v = 0; v < g.V; v++)
            {
                if (indegree[v] == 0)
                {
                    continue;
                }
                root = v;
                foreach (int w in g.Adj(v))
                {
                    if (indegree[w] > 0)
                    {
                        edgeTo[w] = v;
                    }
                }
            }

            if (root != -1)
            {
                // find any vertex on cycle
                var visited = new bool[g.V];
                while (!visited[root])
                {
                    visited[root] = true;
                    root          = edgeTo[root];
                }

                // extract cycle
                _cycle = new Collections.Stack <Integer>();
                var v = root;
                do
                {
                    _cycle.Push(v);
                    v = edgeTo[v];
                } while (v != root);
                _cycle.Push(root);
            }

            //assert check();
        }
 /// <summary>
 /// BFS from multiple sources
 /// </summary>
 /// <param name="g"></param>
 /// <param name="sources"></param>
 private void Bfs(Digraph g, IEnumerable<Integer> sources)
 {
     var q = new Collections.Queue<Integer>();
     foreach (int s in sources)
     {
         _marked[s] = true;
         _distTo[s] = 0;
         q.Enqueue(s);
     }
     while (!q.IsEmpty())
     {
         int v = q.Dequeue();
         foreach (int w in g.Adj(v))
         {
             if (!_marked[w])
             {
                 _edgeTo[w] = v;
                 _distTo[w] = _distTo[v] + 1;
                 _marked[w] = true;
                 q.Enqueue(w);
             }
         }
     }
 }